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FOREWORD

This report presents the results of the work performed by Nortronics-
Huntsville under Contract NAS8-20409 with the Aero-Astrodynamics Laboratory,
Marshall Space Flight Center. Technical coordination was provided by
Mr. Joseph L. Sims of the Fluid Mechanics Research Office, Aerophysics

Division, Aero-Astrodynamics Laboratory, George C. Marshall Space Flight

Center.
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SUMMARY

Nortronics-Huntsville, under Contract NAS8-20409 with the Aero-Astrodynamics
Laboratory, George C. Marshall Space Flight Center, has developed numerical
techniques and computer programs which can be used to predict the entire steady-

state flow field around Saturn-type vehicles at zero angle of attack.

The basic guidelines that were used in this research effort are:

(1) The bodies were restricted to bodies of revolution.
(2) An ideal, inviscid gas with a supersonic free-stream velocity was
used.
(3) All shock waves in the flow field were treated as discrete discontinuities.

(4) Separated flow phenomena were not considered.

Because of the geometry of the bodies and the flow conditions, both subsonic
and supersonic flow regions were considered. Each such region was treated separately
after which the resulting flow fields were coupled together. A time-dependent
finite-difference technique similar to that developed by Moretti and Abbett
was used to compute the subsonic flow region behind detached bow shocks of
blunt- and sharp-nose bodies. The technique treats the shock wave as a movable
discrete discontinuity while the boundary conditions advance in time by the use
of a quasi-one-dimensional method of characteristics. In a similar manner, the
flow field about an expanding frustum with a slope too large to support super-
sonic flow was computed by a time-dependent finite-difference technique. A
Taylor-Maccoll numerical integration technique was used to compute the flow
around a sharp-nose body when the shock wave was attached. The supersonic flow
regions around the cylindrical sections of the body were computed with a two-

dimensional method of characteristics.

The techniques used in this research effort should prove to be valuable
tools for predicting the complete inviscid, steady-state flow field around
Saturn-type vehicles. The techniques developed for the calculation of the
subsonic field around a frustum is the only known means available for this
type of calculation. However, due to the lack of available data for com-

parison, the results for the frustum have not been validated.
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INTRODUCTION

Prediction of flow fields around space vehicles during atmospheric flight
has received increased interest due to the rapid advancement in space flight
technology. Analytical determination of the flow conditions characteristic of
a vehicle during flight is necessary because successful design of space systems
cannot be obtained without prior knowledge of these flow conditions. Develop-
ment of an accurate and practical method of predicting or describing this

flow field has been and continues to be a challenge to the aerospace industry.

Nortronics-Huntsville, Huntsville, Alabama, under Contract NAS8-20409
with the Aero-Astrodynamics Laboratory of Marshall Space Flight Center, has
been engaged in a research effort concerned with developing techniques and
computer programs capable of describing the entire flow field about Saturn-

type bodies at zero angle of attack.

Section II of this report provides a detailed discussion of the techniques
for solving the governing differential equations of motion for the flow field.
The computer programs into which these techniques have been incorporated are
discussed in Section III. Discussion of the results of this research effort is
given in Section IV. Section V summarizes the pertinent conclusions derived

from this investigation and suggests various possibilities for future improvements.
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TECHNICAL DISCUSSION
2.1 NATURE OF THE PROBLEM

The steady-state flow field around Saturn-type vehicles consists of sub-
sonic and supersonic flow regions with shock waves. The flow problems under

specific consideration may be classified as follows:

(1) An ideal, inviscid, supersonic free stream of gas flowing around a
blunt-nose body of revolution consisting of cylindrical sections
and conical frustums. The frustums have slopes that are too large

to support supersonic flow.

(2) An ideal, inviscid, supersonic free stream of gas flowing around a
sharp-nose body of revolution consisting of cylindrical sections

and conical frustums which do not support supersonic flow.

These two flow fields can be further divided into flow regions according to
the type of flow and the geometry of portions of the vehicle. The specific

regions investigated are

(1) Blunt-nose body (subsonic)
(2) Sharp-nose body (subsonic or supersonic)
(3) Cylindrical section of body (supersonic)

(4) Frustum (subsonic).

The entire flow field around a Saturn-type vehicle can be predicted by proper

coupling of these four flow regions.

The subsonic regions are governed by differential equations of motion
that are elliptic in nature, while the supersonic regions are governed by
hyperbolic differential equations. Because the solution of this set of mixed
equations can not generally be obtained by one single mathematical technique,
the subsonic and supersonic flow fields must be treated separately. The computed
flow regions must then be joined together in a manner which does not alter the
adjoining flow regions. Figure 2-1 illustrates the relative size and location

of the different types of flow regions for a Saturn-type vehicle with a blunt-
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nose body. Notice should be taken that the frustum of Figure 2-1 has a slope

too large to support supersonic flow.

SHOCK —g

SHOCK
RN

M~1
M>1

SONIC LINE

M<1

Figure 2-1. BLUNT-NOSE BODY FLOW FIELD
2.2 BLUNT BODY

2.2.1 Selection of Techniques

A number of approaches have been proposed for solving the steady-state,
two-dimensional flow field around a blunt body with a detached shock wave.
Van Dyke (ref. 1) has shown that existing analytical solutions are not sufficiently
accurate to predict the details of the flow field and recent efforts have centered
on numerical techniques for determining the flow field. Investigations of two-
dimensional flow fields around blunt bodies have utilized various numerical
techniques such as inverse methods (ref. 2), series expansions (ref. 3), per-
turbation of coordinates (ref. 4), artificial viscosity (ref. 5), strip (ref. 6),
and time-dependent finite differences (refs. 7 through 10). Each of these
techniques has advantages and disadvantages characteristic of the particular

approach.

After a study of a number of these techniques, Moretti and Abbett (ref. 9)
developed a time-dependent finite difference technique. The unsteady motion
process of Moretti and Abbett is governed by a set of differential equations
that are hyperbolic. The steady-state condition is approached asymptotically

as the computation progresses. Some of the desirable characteristics of this

2-2
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technique are:

(1) It is a direct method in the sense that the body geometry is

prescribed and controls the subsequent computation.

(2) The desired accuracy of the solution is set by the input
spatial grid size, and not by a reformulation of the
analysis. However, the relative short computation time
required on a high speed computer increases with the

desired increase in accuracy.

(3) The method is not restricted to a simplified thermodynamical model.

(4) The shock wave is considered a discrete discontinuity, which is
more realistic than one several mesh-sizes thick, as assumed in
some of the other techniques.

In general, the technique of Moretti and Abbett appears to offer the

best method for obtaining a rapid, accurate solution to the blunt-body problem.
Accordingly, the method adopted and described in subsequent subsections for the

blunt body is essentially the same as that described in reference 9.

22.2 Interior Points

2.2.2,1 Development of Governing Differential Equations - A body-fixed polar

coordinate system (Figure 2-2) is used in the blunt-nose body and frustum
formulations. However, a master polar coordinate system, which originates

at the nose of the vehicle (Figure 2-1), is used when the flow regions are
coupled. The variables for a general flow problem are usually nondimensionalized
so that the results are applicable to more than one particular body. The non-

dimensional parameters used in this report are

<
Ii
<
©
~
o

r r o T o0
1 1
S - S
s = P
v
! 1
P=p /p,
1
D=D/O00
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Figure 2-2.

PHYSICAL PLANE
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and all lengths are divided by Lo’ a characteristic length.

The equations of motion in the physical plane, written in terms

of dimensionless parameters, are

p 13 ) -
ot + r or (pvrr) + 9z (pvz) =0 (D
v ov ov
r r r op -
p(at + Ve or +'vz oz + or 0 (2)
v v v
z z z 9p —
p(at +'Vr or +'vz 2z ) + 0z 0 (3)
~N
ds 98 s _
Bt+vr8r+vzaz_o (4)

These equations are valid for axisymmetric flow fields composed of an ideal,

inviscid gas with no heat addition.

Because a time-dependent finite-difference technique is used to
compute the interior points (region inside ABCD of Figure 2-2) flow properties,
a uniform mesh grid is desired for simplicity in formulating expressions for

the partial derivatives. By means of a coordinate transformation the physical

plane of Figure 2-2 can be molded into a rectangular region as shown in Figure 2-3.

BODY

Figure 2-3. TRANSFORMED PLANE

2-5
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The coordinate transformations which are used to transform equations

(1) through (4) into the transformed plane are

_z =~-b
¢="3%
n=r
T=t »

This transformation allows the physical space between the shock and body to
vary with time, while the transformed space is not affected. That is, the
shock moves until the steady-state location of the shock is found. Thus, for
a specified blunt-body shape, the corresponding shock wave configuration and

location can be found for the steady-state condition.

Because of the coordinate transformation, it is necessary to develop
equations relating the fluid properties in the physical plane to those of the
transformed plane. Any fluid property g(z, r, t) in the physical plane is
related to a fluid property g(£, n, T) in the transformed plane through the

following three equations:

g _3gl

0z 3 § ()
dg _ d9g 1 - - 0 L4

.a_% 3%5{(‘5 1) cot $- & cot }+ o (6)
g og EW D “

il I a4 7

The transformation equations [equations (5), (6), and (7)] are used in con-

junction with equations (1) through (4) to produce the governing equations

for the transformed plane. These equations are

v ov v v
oR oR R E _r, _r, xr 1 z_
ﬁ'+Dag+Vran+dag +3n +n +3 E 0 (8)
v EAY Vv
_r _r _r  EpdP , p dF _ 9
57 TP3E Vs tso s Toan O (9)
2-6
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avz sz BVZ _p 3P
T +D—3E +Vr§n—+sp-a—=0 (10)
oP 9R P 3R P 3R
5t ~Var TP G -vip) vy Gr-Ya) =0 (11)
where

E = (£-1) cot ¢~ & cot ©
D= (v, - &W+ er)/a
R=1In0"o

P = In p.

Notice should be taken that equation (l1) represents the entropy equation
based on the relationship

s =P « YR (12)

2.2.2,2 Numerical Solution of Interior Regions - The transient method of

establishing the fluid properties for the interior region consists of expanding
the fluid properties in a Taylor series with time as the variable. Lax and
Wendroff (ref. 11), the principal investigators of this method, found that the

term containing the second derivative was a necessary condition to insure

convergence of the series. Basically this method utilizes the function (a
fluid property) and the first and second derivatives of the function at time
To to evaluate the function at time To + AT. Written mathematically this
statement is
_ % 0 4 a8 OD?

g(To+-AT) = g(To) + 5 AT + 3T2 3 (13)
where the function g represents either R, P, V,s OT V_. The first time
derivative of g,expressed in terms of space derivatives, is obtained from
equations (8) through (11). Differentiation of equations (8) through (11)

with respect to time produces the second time derivatives of g as follows:

2 2 v

r oR 82R

'R _ M R 3R R
- "{'ﬁ g TP a'rag+a'r- on ' 'r 9Tan
2 2
3
+.];(BE_§Q§.)E+E__Y_£+BV
§ 3T T § aT’/ o § 3Td¢  9Tdn
v 82v v
38
R RACHE PUAC I RN (14)
n 9T § “9Td3g 8§ 3¢ dT
2-7



» [

TR-792-8-306

NORTRONICS — HUNTSVILLE

of space derivatives are

2 2 ov 2
H_B_z {ﬂ&_;_DLR_.*.(Qg_i.l)_{ +VH

o Vv

avV_. 3V
r_r., r

+

= +
5T 3¢ D 3Tee T 3T an

v 2
- 9D Vr 9 Vo
r 3Ton

Ep 3P 9P , p 3E 3P _ pE 3R 3P
p8 3T 3¢  pé T 3¢  pé 3T 3¢

(15)

(16)

aR
'Y8£)+D(8Taé; -Y

82R _{BD 9P 32P 32R

ov 2 2
My 2B R R IG|
tar Gn- Y3 T v G

2 2
2R _  JaD 3R 3R r 9R , 13E 1
SEOT " {a e T D " e Gt st
2 32v 32v azv
R E r T 1 z
+ v + 2 + <
r J&an 6 352 dton 8 agz }

naT an 3E aMdE  dm 0’ an T 2
n
ov azv

1 o Eo38 _r E° r

T3 GRS 3E TS anoe
3 v v azv v

t—a -5 *+t3 G- T 5 i}
an n

3To¢

- aTan)}

Equations (14) through (17) contain crossed time and space derivatives which

)

(17)

can be expressed in terms of space derivatives by differentiating equations

(8) through (11) with respect to £ and N. These crossed derivatives in terms

(18)

(19)
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2 2
d v, B D avr s p] V. avr 2V, Ozvr
A YA 2 Y5 e T VeToon
2
+ 1-‘32(?2) + P 3E 3P  pE 3R 3P
Y AY) p8 & 3E T pd IE 9

3 9n 3
. € 9n n £dn
2 2 2
" _Jao Mr P +(av )2 by Lx
anoT on 9% InoE an Vr 32
P oP | BE R E 38, 9P |, pE 82P
+ 9 48 g2 _ 2 LS
56 (B3 " En T8 an? 32 T 06 anat
2 2
R 3B pAROP  p a_ll}
p 9n P on on P an
2 2
avzz 3_D3Vz+ 3V +avrav_i_ avz
3ET 3E 3 32 9t on  Vr BEan
p AP B3RP . p azP
o8 G T 2
g
% 2
v, _ Jap v, 37V, 3V av iy 3V,
anaT an ot andE  an  an r ; 2
n

LB @B _Llai_ BRy 2B, p’R
pS "9n § 9n on~ 3¢ pS 9nag

2 2 2 2
9P _y 3°R__JaD 9P | 3R L |
5E5T | 9EaT {ag Ge- Y32 TP Ez -y =)

g 3

ov 2 2
aP R P R
T O S C U )}

& an on r 93&9n 9&9n
32P=Y32R _B_Q(B_E_YB_E)+D(.B_2_E’___Y_£B_.)
onaT anaT an "3 13 9£3n 3EIN

v 2 2

r ,oP oR o P 2 R
(g - YD) tv, (5 - Y %)
n n an r an2 8n2
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The terms n? 5;5, and

I

Equations (8) through (11) and equations (18) through (25) can be used to
evaluate the second time derivatives of g [equations (14) through (17)]
solely as functions of space derivatives. The space derivatives occurring
in the expressions for the first and second time derivatives can be closely
approximated by finite differences. A standard central finite-difference
scheme has been used for evaluating the partial derivatives. The first and

second space derivatives of g in finite-difference form are

[g(1+1,J) - g(I-1,J3)1/2a¢ (26)
[8(1,3+1) - g(1,3-1)]/2an (27)
[g(1+1,3) +g(I-1,3) - 2g(I,3)1/(aE)> (28)
= [g(1,3+1) +g(1,3-1) - 2g(1,)1/(sn)> (29)

2B (1,7) = [g(I+l,J+l) - g(I+1,J-1) - g(I-1,J+1)

+ g(I-1,J3-1)]1/4AnAE (30)

where I and J refer to the grid point in question, as shown in Figure 2-4,

2

—5 are evaluated by the central finite-difference
dn

scheme. The remaining terms are evaluated as follows:

cot 6 - a; (31)
(32)
2 2
-8 4D (33)
an dn
2 (34)
an
rLl (35)
oan
2-10
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v v
aD 1 r oFE z
—==|-W+E—+ + — 37
9 ¢ |: Ve pY3 ag:l (37)

*— 2 g
I-1,0+1 I,J+1 I+1,3+1
) : ‘
I-1,J I,J I+1,J
¢ -—
I-1,J-1 I,d-1 TIH sJ=1
Figure 2-4. FINITE-DIFFERENCE MESH
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v v
D_|_z M, 3EI 1
3T [aT tyr Ty Etvg BT] S
1 58
-?[vz-wg +VIE] 3T (38)
M [W(T + AT) - W(T )]/AT (39)
oT o o

Equation (39) indicates that the shock velocity must be evaluated at each

new time before the remaining fluid properties between the shock and body

may be evaluated at that same time. Evaluation of the shock velocity will

be discussed in detail in Subsection 2.2.3.

The time-dependent finite-difference technique will be stable if the
Courant-Friedrichs-Lewy (ref. 12) criterion is satisfied. A safe or stable
step size AT is taken as the minimum of A( )/1.5a(M+1), where A( ) is the
smallest of the intervals AZ and An, a is the speed of sound, and M is the

Mach number.

The procedure described can be programmed for a computer which will
calculate the fluid properties (P, R, v, and vr) at the new time step for
the interior region between shock and body. However, the computation requires

the boundary conditions at the old time step. These conditions are discussed

in the next subsection.

2.2.3 Boundary Conditions

The points on the boundary, ABCD, of the blunt-body flow field (Figure
2-2) are computed differently from those of the interior region. The shock
points are discussed first in detail since the body points are computed in a

similar manner.

2,2.3.1 Shock Points - The Rankine-Hugoniot shock relations, which are used

to compute the fluid properties on the downstream side of the shock at time
T + At, are
o

2-12




’ ' TR~792-8-306
NORTRONICS — HUNTSVILLE

(Y-l)(Vm-W)2 sinze +-2ai

v )V ,-Wysin 6 W sin 6 (40)
2(v°°-w>2 sin20 - (y-1)
P= ) (41)
~ O+)p + (v-1)
=) T o-Dp (42)
V=V cos6 ’ (43)

The only unknown parameters in the expressions for U, p, and p are W, the.
local shock velocity and 6, the local shock angle. These parameters are also
needed for the solution to the set of differential equations governing the
interior flow fields at time To + At. This implies that an initial shock
velocity, location, and shape must be assumed to start the computational

procedures,

Some technique must be developed which will insure that the correct
shock velocity has been obtained at each time step, subsequent to the first,
before the flow field calculations are made. This technique is developed
through the use of an auxiliary set of cartesian coordinates fixed to a
curvilinear shock wave with velocity W as shown in Figure 2-5. The v-axis
remains tangent to the shock wave at the point in question, Ql, while o is
normal to shock at the same point. The terms U and V are the ¢ and v components
of the velocity vector at any point P within the flow field. Thus, the equations

of motion for the flow field can be written in the (o, v, t) space as given

below.
%% +Uu %5 +'%g = - %g -V %% - (Vsin® - U cos 9) % (44)
Rt tEE =V i (45)
RrUG VR (46)
%E-Y§+U%§-YU%§=YV§—§-V% 47)
2-13
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Figure 2-5.

SHOCK POINT IN AXISYMMETRIC UNSTEADY FLOW
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These equations are valid up to but not across the shock wave. However, it is
well known that the v-component of velocity is the same on both sides of the
shock. Thus, in the neighborhood of a shock point, the significant parameters
(ref. 9) are ¢ and U. Consequently, equations (44) through (46) are considered
as quasi-one-dimensional equations modified by the forcing terms on the right-
hand sides.

Equations (44) through (47) are hyperbolic differential equations for
which real characteristics always exist for the subsonic flow region (ref. 13).
This property of the equations is used to establish the technique necessary for

calculating the correct shock velocity.

The exact differentials of the relevant fluid properties, with the

assumption that the flow near the shock is quasi-one-dimensional, are

_ U 3U

dU = = dt + == do (48)
) el

dP = T dt + %G do (49)
- R 3R

dR = = dt + = do (50)

Equations (44), (45), (47), and (48) through (50) can be used in a
manner éimilar to the method discussed in reference 13 to obtain three characteristic

equations in the (o, t) plane. They are

do

it =U - a (51a)
do _
T U + a (51b)
do _
it U (51c¢)

These equations have immediate interpretation in terms of a quasi-one-
dimensional flow. The compatibility equation along the first of these
characteristics [equation (51a)], which extends from the shock to a point

within the interior region, is

2-15
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du _adP_ ) +.§!.§£ +ad¥y 2 (v sin 0 - U cos ¥) (52)
dt Y t IV Y Vv v T
A characteristic with the slope %% = (U - a)Ql is drawn from point Ql

(new shock point based on an assumed horizontal shock velocity) in the (0, t)
plane as shown in Figure 2-6. The intersection point, Al, of the characteristic
and the o-axis at the old time To is contained in the physical plane. The
complete flow field is known at time To and therefore, the fluid properties of
point Al are also known. However, point Al is not likely to be a mesh point in
the (&, n, T) plane and interpolation of the properties are usually necessary.
Figure 2-6 shows the location of point Al and also aids the subsequent discussion
concerning the computational procedure for locating the point in the (&, n, T)
plane at time To. The subscripts used in this figure refer to a particular point
and are later used to indicate that the fluid property in question is evaluated
at the point. The length of the characteristic curve, oAl’ is

do

Oa1 = gc At = - (U - a)at

The z coordinate of the shock point at time To + At, le,is expressed as

z =z + WAt .
Q1 Q

The z coordinate of point Al is

1l

4 + g

zAl Q1 sin ¢

Al

1l

z. + WAt + o

Q Al sin @8.

The z coordinate of point Q can be written in terms of variables which have

already been defined as

z =6§. +Db .

The transformed coordinate,&Al,is obtained from the relation

2-16
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Figure 2-6.

LOCATION OF POINT A1 IN PHYSICAL PLANE AT TIME T,
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£ o= Al - Pa1
Al 6A1
%1 is substituted into the expression for gAl to yield
8 i -
. _ %Q + bQ_—i_- WAt + OA]. sin® bA]. (s3)
Al s
Al

The vertical coordinate of point Al is

rAl = rQ - OAl cos 6 .

Because there is a one-to-one correspondence in the vertical direction, the

transformed coordinate of point Al is

nAl = nQ - 0pq COS 0 (54)

The fluid properties at point Al can now be obtained by a linear interpolation

between the neighboring mesh points.
A characteristic with the slope

- [(u - a)gy * (U - a)Al] /2 (55)

is issued from point Ql which causes point Al to change locations. The fluid
properties at the new point Al are obtained by interpolation and are used in
accordance with equation (55) to define the slope of a new characteristic which

is issued from Ql. The process is repeated until the position of Al stabilizes.

The right-hand side of equation (52), designated H, is now computed at
points Al and Ql as follows:

= |-y oUu , aV 3P AV .2 v sins -
HA1 [; VIS +Y ™ + a 5y +-r (V sin 6 U cos 6)
- Al
H = |-V AH + Ez'ig + a é! +-3 (V sin 6 - U cos 6)
Q1 v Y dv v r
J Q1
2-18
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The average of HAl and H 1° which is considered constant with respect

Q

to time, is used in place of H in the subsequent integration. Equation (52)
can be integrated with respect to time and a value of UQI can be obtained if

the pressure at Ql is assumed to be the value calculated by equation (41).
Thus,

1 a + a 1 T +At H + H
J’Q a - AL fQ w=- [ AL Qb
Al Y Al T
o]
which yields
a,, ta (4, .+H _.)
i 212 i _ Yartg
Uor = Ya1 7y (Pq1 ~ Par) ) At (56)

I1f UQl does not agree with the value of U calculated by equation (40), the
assumed shock velocity was incorrect. Thus, the shock velocity is changed and
the entire shock point process is repeated (except the location and angle of
the shock wave remain fixed) as many times as necessary to obtain the correct
shock velocity at the new time. This shock velocity is used in the interior
point calculations for the current time increment and is used to establish the
shock location at the next time increment. The above procedure is valid for

any and all points along the shock.

2.2.3.2 Body Points - The boundary conditions of the body points are treated
in a manner similar to the shock point boundary conditions. However, there are
no straightforward equations such as the Rankine-Hugoniot shock relations which
can be used to calculate the fluid properties along the body at time To + At.
Therefore, additional information must be obtained from an auxiliary set of
equations that are valid specifically along the body. A body-fixed Cartesian
coordinate system as shown in Figure 2-7 is used to develop the necessary

equations.

The equations of motion for the flow field written in terms of the

body-fixed coordinate system are

3R 3R , U _ 3V R 1

—+ U=+ == = - (V si -U = 57

5t U 30 30 v v v (V sin ¢ cos ¢) r 7
2-19
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g—g+u%+§g§=-v%g (58)
-g—z-yg—§+Ug-§-YU%§=YV§%’V‘g'g (60)

Since the primary concern at this time is to develop the fluid properties along

the body, the condition of no flow through the body can be applied to reduce the

complexity of these equations. The resulting equations are

%%.+-%% = . %% -V %% - %-sin ¢ (61)
%gzo (62)
B yBywE v E (64)

This set of equations completely defines the first time derivative of R, P,
and V in terms of available space derivatives and the variables R, P, and V
at time To' A first-order Taylor series for these variables with respect to
time will yield good approximations of the flow along the body at time T0+At.

For example,

_ aP
P(T0+At) P(To) + 5 At (65)
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Coupled with such first-order Taylor series approximations, a quasi-one-
dimensional method of characteristics is used similar to the technique used

for shock points. Equations (48), (49), (50), (57), (58) and (60) will yield

the three characteristics of equation (51). The second characteristic %% =U+ a
is applicable for the body because of its leftward direction as shown in Figure

2-8. The compatibility equation for this characteristic is

U adp_ . oU aVgp oV
Y dt av Y oV v

- % (V sin ¢ -~ U cos 9) (66)

The pressure is considered as the significant parameter used to determine the
accuracy of the first-order Taylor expansions because the ¢ -component of
velocity vanishes on the body. The characteristic is issued from any body point
Q2 and intersects the physical plane along the c-axis at time To as shown in

Figure 2-8.

2 rt

To + at

Figure 2-8. BODY-POINT CHARACTERISTIC
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Point A2 is located in a manner similar to the shock point location procedure.

The length of the characteristic equation,oAZ, is

o =~ (U + a) At.

A2

The z coordinate of point A2is written mathematically as
z = Z

A2~ %q2 T 9a2 Sim 4

where ¢ is the body angle at point Q2. The transformed coordinate,EAz,written

with zQ2 replaced by bQ2 is
gAz ) bQ2 - OA§ sin ¢ - bA2 (67)
A2
The transformed vertical coordinate
nAZ = nQZ +-0A2 cos ¢ (68)

Equations (67) and (68) establish the location of point A2, The fluid properties

at this point may be found by interpolation.

A procedure similar to that of the shock points is used to stabilize point
A2, Since the second characteristic is used for the body, the right-hand side

of equation (66), designated K, is computed at points A2 and Q2.

_ U aV 9P oV  a .

KA?. = [. v Frvi —Y PRl Sew - (V sin ¢ U cos ¢)] A2
_ aVvV 3P _ oV _a .

K2 = [’ Y v %oy Trvsim ¢]Q2

As before, KA2 and KQ2 are arranged and used in place of K in the subsequent
integration. Equation (66) is integrated so that the pressure at point Q2 can

be calculated. Thus,
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% %q2 tag ¥ ToTat K. +K

f du + 7Y f dP = I A2 92 dt ,

A2 A2 T 2

(o]
which yields
a + a (K., +K_.,)
U, -u. +-R2 A2 _p oy _ A2 2 .
Q2 A2 2y Q2 A2 2

Use of the condition that U, = 0 and rearrangement of the remaining terms

Q2
produce an expression for PQ2 which 1is
2 (Kpa + Kgp)
P_ =P, +—2Y |y +_AcL Q< (69)
Q2 A2  a ., ta A2 2
Q2 A2
The pressure calculated in equation (65) is compared to PQZ' If the agreement

is outside of the accepted tolerance, a correction that is proportional to the

difference between P., and P(T0+At) of equation (65) is made to %% . The

corresponding changeqin density is calculated by equation (64). The procedure
for determining the fluid variables on the body at time To + At is repeated
until the agreement is within tolerance. After the agreement is within the
accepted tolerance, the remaining properties are computed from the first-order

Taylor expansions.

2.2.3.3 Upper and Lower Points - Symmetry conditions are applied to the center-

line of the flow field between points A and B of Figure 2-2, Calculations of
the fluid properties along this line are included in the interior point solution

as a special case.

The values of P, R, v, and v, at points on the upper boundary, CD
of Figure 2-2, are extrapolated linearly from the values computed in the interior
point region. Such a shortcut is justified provided the upper region is super-
sonic for the steady-state condition. Since the location of this boundary is
left to the discretion of the investigator, a workable knowledge of blunt-body
flow fields is necessary to insure that the flow downstream of line CD does not

affect the subsonic-transonic region ABCE. Line CE of Figure 2-2 represents the
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down-running characteristic issued from point C. No perturbations can be sent
downward from the points above line CE., For this reason, the region ABCE is

insensitive to the technique by which the properties along line CD are computed.

The only requirement is to use values which do not generate local instabilities
along this line. However, the location of point C is directly related to the
free-stream Mach number. The vertical height of point C is higher than the
adjoining cylindrical section of the vehicle body for Mach numbers below a value
of approximately 2. Therefore, the present interior point flow field must be
modified to extend above the body as shown in Figure 2-9. When this modification
is made, the definition of §, the distance between the shock and the body, has
little or no meaning. This results in a fictitious body downstream of the
limiting characteristic, but such a fictitious body will not affect the location
of the sonic line or the subsonic flow field. Another interesting problem

area is obtained for a Mach number between 2.0 and 3.0 for air. For this flow
condition, the location of the knee of the sonic line is higher than the sonic
point on the shock wave. The limiting characteristic issued at the shock will
also be higher than point C which means that the interior grid must be large
enough to include all of the region beneath the characteristic line. The easiest
way to handle both problem areas (Mach numbers less than approximately 3.0 for
air) is to concentrate on the lowest Mach number range. If the grid can handle
the flow for Mach numbers below 2.0, then it will automatically be capable of
treating the flow for Mach numbers between 2.0 and 3.0. The technique used in
this investigation is to locate point D of Figure 2-9 on the body such that a
defined § still exists. The location of point D in this manner is sufficiently
far downstream so that the limiting characteristic will terminate upstream of
point D. Thus, the values of P, R, Vs and v, along lines CF and FD are extra-
polated linearly from the interior region without introducing perturbations

inside the transonic region.
2.3 SHARP-NOSE BODY

If the shock wave is attached, Northrop-Norair's existing Taylor-Maccoll
method of numerical integration (ref. 14) for flow past a cone can be used to

calculate the flow field downstream of the shock.

The blunt-body technique can be used to compute the flow behind the detached

shock wave of a sharp-nose body. Essentially the only modification necessary is
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to specify a different body. There is one difficulty associated with a body
of this type since the upper corner represents a discontinuous derivative of
the body shape. This discontinuous point cannot be represented by any realistic
boundary condition. To avoid this difficulty, the corner is rounded so that the
body derivatives are continuous and the boundary conditions can be specified.
A fix of this type is justified because most machined corners are rounded. More

details concerning this corner are given in the frustum discussion.

24 CYLINDRICAL SECTION SUPERSONIC FLOW

The supersonic flow region around the conical sections of the axisymmetric
body can be treated with a two-dimensional method of characteristics (ref. 14)
developed by Northrop. The blunt-body technique computes the fluid properties
along an initial line which is used to start the method of characteristics

computation.
25 FRUSTUM

25.1 Selection of Technique

Subsonic flow behind a detached shock on a frustum, as shown in Figure 2-10,
can be treated in a manner very similar to blunt-body flow. The primary difference
is that the center streamline of the blunt-body flow field is replaced by a solid
boundary, a cylindrical section of the vehicle. Another difference is the fact
that the frustum has a non-uniform free-stream velocity. The previously developed
blunt-body technique can compute the flow field around a frustum by applying
different boundary conditions. Due to the fact that only minor modifications

were necessary, this technique was selected to compute the frustum flow field.

2.5.2 Interior Points

If the coordinate system of the blunt-body technique is used on the
frustum, the governing differential equations and the manner in which their
numerical solution is found will be the same as those of the blunt body.
However, the area of the interior points must include the region of ABDFC of
Figure 2-10 regardless of the Mach number range. The reason for this condition
is that all pertinent investigations locate the sonic point on the body at the
expansion corner. The interior point calculations do not include line AB since
the symmetry conditions do not apply along the body. This line is treated

separately in the boundary conditions section.
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25.3 Boundary Conditions

2,5.3.1 Shock Points - The nonuniform free-stream flow is handled by the Rankine-

Hugoniot shock relations without any difficulties since such relations apply to
each shock point independently. The free-stream velocity and other fluid properties
which are substituted into these relations are those values in the nonuniform
supersonic flow field generated by the two-dimensional method of characteristics
which correspond in space to a particular shock point. The remaining shock point
procedures are exactly the same as those discussed in subsection 2.2.3.1 for

the blunt body.

2.5.3.2 Body Points - The fluid properties between points B and D of Figure 2-10
are computed in exactly the same manner as the body points were for the blunt body.
According to the available literature, the sonic point is located at point D, the
extremity of the sharp corner. This implies that the limiting characteristic

as discussed in subsection 2.2.3.3 also terminates at point D. However, at this
point the body surface has discontinuous derivatives which cannot be treated

with the computer program. To avoid this discontinuous point, the sharp corner

is rounded as shown in Figure 2-11. The body shape at point D is assumed to

be approximately the average of the slopes on both sides of it. Based on this
assumption the direction and derivative of the velocity have realistic meanings.
The sonic point,D',for the rounded corner is located upstream of point D, while

the termination point,E,of the limiting characteristic is located downstream

of point D'. Because of the limiting characteristic, the grid used for this flow
case must include all points upstream of point D". 1In reality, this report assumes
that the body downstream of point D" does not affect the location of the sonic
line,

Because axisymmetry conditions do not apply to the solid boundary from
points A to B of Figure 2-10, the properties along this boundary are developed
by a finite, time-dependent, quasi-one-dimensional method of characteristics.
Once again an auxiliary set df cartesian coordinates is applied to the flow

along the body as shown in Figure 2-10.
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SONIC LINE

Figure 2-11. ENLARGED VIEW OF POINT D

Substitution of the boundary conditions for line AB (V = 0, ?T‘t, =0, and

g% = Q) into the equations of motion results in a reduced form for these

equations which can be written as

g—g+ug€-+§%=o (71)
g_§=o (72)
%-y%—%+U(%-Y§)=O (73)

Equations (70), (71), (73), (48), (49), and (50) are used to obtain equations
of characteristic curves such as those obtained in subsection 2.2.3.1. The

compatibility equation along the characteristic %% =U - a is

The compatibility equation corresponding to the characteristic curve %% =U -+ a
is

au yadb_ WV (75)

dt Y dt v
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Equations (74) and (75) are used to calculate the correct U and P at point Q3
for time T°+At. Figure 2-12 shows the characteristic curves that are issued

from point Q3 and terminate at points A3 and B3 at time To.

The procedure used to locate and stabilize points A3 and B3 for the
cylindrical section in the transformed plane is similar to that used in
locating point Al for the shock and point A2 for the body in Subsection 2.2.3.
The primary difference is that for the cylindrical section two compatibility
equations must be solved simultaneously for two unknowns, U and P. Equations
(70), (71), and (73) are used to calculate %% , %% , and %% , respectively,
from the known fluid properties at time To' A first-order Taylor expansion in
time yields a good first approximation of the properties at point Q3 for time
T0+At.

oU
U(To) + o7 At (76)

+
U(To At)

9P
P(To) + 3¢ At a7

]

A
P(T°+ t)

dR
R(To) + EYY At (78)

+
R(To At)

These properties at point Q3 are necessary so that the initial characteristic
curves can be issued. The subscripts below refer to points shown in Figure 2-12,

The length of the characteristic curveﬂ%B,fbrpoint A3 is

do

0A3=-a—t—dt=-(U-a)At.
The 2z coordinate of point Q3 is
zZ =2 + WAt
CER! fq

where WEQAt represents the physical distance moved by point Q in the time

increment At. The z coordinate of point A3 is given by
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Figure 2-12.

LOCATIONS OF POINTS A3 AND B3 IN PHYSICAL PLANE AT TIME T,
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203 T %Q3 T Oa3 T % T WhtEy top3 -
The transformed & coordinate of point Q is
z. - b
E = ——QS__& .
R
Rearrangement results in an equation for ZQ which is
¥4 = 6 + b .
0~ %% " "o
Substitution of ZQ into the expression for 2,3 yields
=6 A .
Zy3 =0g%q T bq t EQPt * 0y
The transformed coordinate of point A3, €A3’ is
e - A3 ~ Pa3
A3 GAB .
Substitution of Z,5 into E’AB results in
~ (GQ + wm:)&Q +0,3 - bygt b4Q
€A3 - 6 .
A3
However,
6 = 6 =
Q A3 and bA3 bQ
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which result in the final expression for €A3

(853

+WAt)gQ t 0,
ta3 = 5 (79)
A3
A similar expression for €B3 can be written as
__(6B3+WAt)gQ - Op3
B3

Because the location of both points A3 and B3 are on the body at time To’

the r coordinates are

Na =" =0 (81)

The properties at points A3 and B3 are interpolated linearly between neighboring
grid points at time To. New characteristics with average slopes are issued from
point Q3 until the location of points A3 and B3 stabilize. This process was

discussed in detail in subsection 2.2.3.1.

The right-hand side of equation (74),designated N,can now be computed
for points Q3 and A3 as follows:
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As before, the average of N and NA is used in place of N for subsequent

Q3 3

integration along the characteristic curve with slope %% = U - a. Integration
of equation (74) with respect to time from point A3 to point Q3 yields an

expression with both U., and P_, as unknowns. This expression is

Q3 Q3

a + a (N_ N, )
Ugz = Uasz - _0’3_'27£ (PQB - Pyg) = -'g%__AB_ At (82)

A similar expression for the integrated compatibility equation corresponding

R . o
to the characteristic curve with slope do _ U + a is written as

dt
a +a (N_ . N_.)
3 B3 3 B3
Ups - Ups * —0»——2Y (Bys - Pyg) = - ——Q————z At (83)

where

_ v
Np3 = [a av] B3

Equations (82) and (83) are used to calculate values of U__, and P These

Q3 Q3°
values are compared to the values calculated by equations (76) and (77)
as part of an iterative procedure. Since the density is related to the
pressure through equation (73), the pressure term is used as the criteria

for accuracy. If PQ3 is different from P(T0+At), which was obtained from

aP
equation (77), these two values are averaged and a new~g-is computed
with a Taylor expansion which is ¢
e
_l PQ3 + P(To At) ety = oP (8
At 2 o ot

R
A new %E is also computed and the properties are once again expanded in first-
order Taylor series with respect to time. A new sonic velocity is computed so

that new characteristics with slopes
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do
dt Q3 = “new
and

do
dt Q3 new

are issued from point Q3. The above process is repeated until the pressure
computed by equation (77) is within the allotted tolerance of that found
through the compatibility equations. When this agreement has been obtained,
the correct values of the other fluid properties have also been obtained for
point Q3 at time T0+At. This procedure is used for all points along line

AB of Figure 2-10.

2.5.3.3 Upper Points - The upper boundary, line CFD in Figure 2-10, is

treated exactly as the boundary of the blunt body for the low Mach number flow
cases., That is, the properties at these points are extrapolated from the
interior point region. The limiting characteristic is assumed to temminate at
point D due to the expansion corner. The literature search has revealed no
information that refutes this assumption. Extreme care was taken as discussed
in subsection 2.5.3.2, to round the corner at point D to insure that realistic

boundary conditions are applied.

26 INTERFACE BETWEEN FLOW REGIONS

The discussion above presents the technique of describing the subsonic
flow field behind a detached shock wave in supersonic flow. It is necessary
to couple the subsonic and supersonic flow fields to describe the entire
flow field around Saturn type vehicles. Care must be taken that the process
of coupling does not change already established flow field properties. The
programs developed utilizing the above techniques and the details of coupling

are presented in Section III,
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Section 11|
COMPUTER PROGRAM

3.1 PROGRAM DEVELOPMENT

As the state-of-the-art of mathematics is not yet sufficiently advanced
to allow the calculation of both subsonic and supersonic flows by the same analy-
tical technique, it is necessary to develop a separate technique for each flow
region as described in Section II. The techniques and the methods necessary to
combine the separate solutions for the subsonic and supersonic regions have
been programmed in FORTRAN IV for the IBM 7094 computer. These programs, along
with a description of each subroutine, and program execution are described in
the subsections which follow. Descriptions of the inputs and outputs are con-
tained in Appendix A. Appendix B provides sample inputs and outputs. Source

listings are contained in Appendix C.

3.1.1 Blunt Body Routine

Based on the techniques presented in Section II, a program has been
developed that is capable of calculating the flow field behind a detached shock
wave in supersonic flow. The vehicle shape behind the shock may be a cylinder
or hemisphere, a wedge or cone, or a frustum in two-dimensional or axisymmetric
flow. 1f a wedge, cone, or frustum flow field is to be calculated, the shoulder
must be rounded to avoid singularities in the flow field. The vehicle shape
immediately upstream and downstream of a frustum flow field is assumed to be

parallel to the free stream flow direction.

3.1.2 Cone Routine

A program is provided to calculate the supersonic attached shock wave
flow over a cone. The Taylor-Maccoll (ref. 14) technique is used. In the
event that the Mach number is so low as to cause the shock wave to be completely
detached, the Blunt Body program is automatically called to calculate the
flow field.

3.1.3 Supersonic Flow Routine

The solutions to the supersonic flow regions downstream of the nose of
the body are provided by the NORAIR Method of Characteristics Program (ref. 15).

This program Ls capable of calculating the flow over a two-dimensional or
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axisymmetric vehicle of almost any shape. The program starts from an initial
value or characteristic line along which the flow values are known, and continues
the characteristics program downstream. If a frustum is encountered for which

the frustum angle is too great to support supersonic flow, the program automatically

terminates.

3.2 INTERFACE BETWEEN FLOW FIELDS

Because a numerical solution of the complete flow field surrounding a
Saturn-type flow field (Figure 2-1) is the desired result, the solutions of
the separate flow regions must be coupled together. This results in two types
of flow field interfaces: the supersonic to subsonic interface and the subsonic

to supersonic interface.

The supersonic to subsonic interface, a shock wave, occurs at any place
where the Blunt Body Routine must be used. 1In the flow over a cylinder,
hemisphere, wedge, or cone, the upstream supersonic flow may be assumed to be
uniform, and the Rankine-Hugoniot equations for moving shocks represent the

interface.

For subsonic flow over a frustum, the upstream conditions are non-uniform,
with all flow variables being functions of both space variables. 1In this case,
the supersonic flow field which would occur in the absence of the frustum must
be defined by the Supersonic Flow Routine. The resulting characteristic lines,
and associated property values are stored off-line on a tape. A second run is
then made, with the tape as an input and the frustum included. The character-
istics stored on the tape are used to define the local flow field upstream of

the shock wave by a quasi-two-dimensional curve-fitting technique, as shown

in Figure 3-1. In the quasi-two-dimensional curve fitting technique,

CHARACTERISTIC
LINES

(x2,Y)

(X1,Y)

(x3,7)

Figure 3-1. QUASI-TWO-DIMENSIONAL CURVE-FITTING TECHNIQUE
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the flow variables and the axial distance X are curve-fitted by the least
squares technique against the radial distance Y along each characteristic

line in the vicinity of the shock. To establish the flow at some point (X,Y)
upstream of the shock, the flow variables and X coordinate at a height Y on the
three characteristic lines nearest the point (X,Y) are calculated by means of
curve-fit polynomials evaluated at Y. This procedure results in the flow
variables being defined at points (Xl, ?), (x2, ?), and (X3, Y). A three-point
Lagrangian interpolation formula is used for these three points to evaluate the
flow variables at the point (X, Y). The Rankine-Hugoniot equations for moving
shocks, with the local upstream conditions, then represent the interface. The

source listings of these subroutines are included in Appendix C.

The subsonic to supersonic interface is encountered when going from the
Blunt Body Routine or Cone Routine to the Supersonic Flow Routine., The interface
is represented by a right-running characteristic between the shock and the body.
This characteristic is normally constructed from the uppermost néde point on the
body (see Figure 2-9). This method of construction insures that the starting
characteristic line for the Supersonic Flow Routine is beyond the limiting
characteristic from the body to the sonic line (Figure 2-9). Thus the shock and
body shape downstream of the starting characteristic do not affect the already
calculated upstream flow field. The starting line for the Supersonic Flow
Routine is thus established, regardless of the body shape downstream of the
starting line. The establishment of the flow field beyond the starting line, as

well as the shock shape, is left to the Supersonic Flow Routine.
3.3 PROGRAM EXECUTION

After the first two data cards have been input, the main executive program
determines the sequence of routines to be used. If the input specifies that
the forebody is a cone, the Cone Routine is called. The Cone Routine determines
if the shock is attached or detached, by comparing the Mach number and cone angle
to data from reference 16. If the shock is detached, control is given to the
Blunt Body Routine; otherwise, the Cone Routine finds the solution to the conical
flow field and sets up on tape the necessary variables to couple the solution to

the method of characteristics. Control is then returned to the main executive

program.
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1f the input specifies that the body shape is a cylinder, hemisphere, or
frustum, control is passed to the Blunt Body Routine to find the flow values
behind the detached shock. Variables are read in to define the body shape and
grid shape, an initial flow field is defined, and the calculations are performed
to change the flow field in time towards its asymptotic final value. After a
set number of iterations, the flow field is assumed to be found and the
variables necessary to couple the solution to the method of characteristics

are written on tape.

After a solution is found by either the Cone or Blunt Body Routines,
control is passed to the Supersonic Flow Routine. This routine generates the
supersonic flow field over the remainder of the body beginning with the solution
written on the tape. If a frustum is encountered such that the Supersonic Flow
Routine cannot compute the flow field, the program terminates. This termination
implies that the shock wave over the frustum is detached and the flow behind the
shock is subsonic, and it is necessary once again to employ the Blunt Body Routine.
Before the Blunt Body can be used, however, as described in subsection 3.2, the
supersonic flow around the cylindrical body, which would occur in the absence of
the frustum must be generated by means of the Supersonic Flow Routine. This is
done by restarting the program at some characteristic line upstream of the
frustum region, and calculating the supersonic flow field as it would occur if
no frustum had been present. Calculation of this flow field extends downstream
of the point where the frustum actually occurs, as shown in Figure 3-2. All of
the data necessary for restarting the Supersonic Flow Routine can be found in
the punched output from the previous run. The flow field data from the restarted

run is stored on Output Tape B7, which must be saved,

A final run is made with Output Tape B7. This final run calculates the
mixed flow field behind the shock with the Blunt Body Routine using the Frustum
option and again proceeds with the Supersonic Flow Routine. The procedure must
be repeated for each frustum. The first run, which determines if the shock is

detached, may be left out if it is known in advance that the shock is detached.

3.4 SUBROUTINE DESCRIPTIONS

Descriptions of all of the subroutines necessary to calculate the mixed
flow field are provided in this subsection. For convenience, the descriptions
are arranged in alphabetical order. The source listing of these subroutines

is provided in Appendix C. A flow chart of each subroutine is provided in

Figure 3-3, 3-4
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B

Function B provides a horizontal coordinate of the body as a function of
the vertical coordinate. It has an option to provide this information for
either a blunted (hemispherical or cylindrical nose) or a flat (wedge, cone, or

frustum) vehicle shape. The corner of a flat type vehicle is automatically

rounded,

BLUNT
Subroutine BLUNT is the main executive program for the mixed flow field
program. After a solution to the flow field is found, the subroutine constructs

a right running characteristic to provide coupling to the characteristics program.

BDYPTS
Subroutine BDYPTS is the subroutine that calculates the flow values at a
new time step along the face of the vehicle. The quasi-one dimensional

characteristics technique (Section 2.2.3.2 ) is used.

BP
Subroutine BP provides the first and second derivatives of the horizontal
coordinate of the body with respect to the vertical coordinate. It will provide

this information for the same shapes allowable in Function B.
CTL
Subroutine CTL uses the techniques described in Section 2.5.3.2 to calculate

the flow variables on the cylindrical section of the body if a frustum is being

calculated.

COFFER

Subroutine COFFER accepts characteristic data from a tape and, if the data
is in the region around the frustum, curve-fits the flow variables and the
horizontal coordinates along a characteristic line against the vertical
coordinates. The coefficients of the curve-fit are stored.
DERIV

Subroutine DERIV provides first derivatives of flow variables with respect
to the vertical coordinate,
ENTER

Subroutine ENTER is a two-dimensional interpolator.

3-9
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EXTRA

Subroutine EXTRA extrapolates to the outer boundary those flow properties

that are a function of the vertical coordinate only.

EXTRAL
Subroutine EXTRAl extrapolates to the outer boundary those flow properties

that are a function of both spacial coordinates.

INDR1

Subroutine INDR1 provides the necessary spacial derivatives for subroutines

NTRNP and NTRNP2.

INITL
Subroutine INITL reads in the input pertaining to the program and sets up

the initial values for the flow field.

INPRT

Subroutine INPRT prints out several initial calculations pertaining to the

flow field.

NSMTH

Subroutine NSMTH provides a linear interpolation for the calculation of

the points between the shock and the body to set up the initial flow field.

NTRNP
Subroutine NTRNP calculates the flow values at the next time step for all

points internal to the boundaries using the techniques shown in Section 2.2.2.

NTRNP2
Subroutine NTRNP2 uses the same techniques as NTRNP to calculate the flow

values at the next time step for the points above the body.

PRINT
Subroutine PRINT prints out the flow variables after the flow field

solution has been found.

RANKH
Subroutine RANKH provides the shock jump equations for subroutine SHKPTS.

3-10
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RES
Subroutine RES uses the curve-fitted characteristic data to provide the
upstream flow conditions to subroutine RANKH as a function of both coordinates

for a frustum type flow field.

SHKPTS
Subroutine SHKPTS calculates the flow variables behind the shock at a new
time step. The quasi-one-dimensional characteristics technique of Section 2.2.3.1

is used.

3-11
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FRUSTUM

CALL INITL

!

DEFINE FRUSTUM
SHAPE, o

!

CALL NONUNIFORM

BLUNT NOSE

CALL INITL

K|

f_T—_l

CALL
SHKPTS

CALL
BDYPTS

FLOW SUB. |
CALL
' NTRNP
: CALL
YES CTL
NO

ADVANCE
UPPER VARIABLES
POINTS IN TINE
?
CALL
NTRNP2 -

STEADY
STATE
?

PRINT

RETURN

Figure 3-3b. MAIN BLUNT BODY PROGRAM
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SHKPTS

INITIALIZE

J =]
ASSUME | [=e—

—

!

CALL
RANKH

WITH ASSUMED ==
W

FIND
CHARACTERISTIC
LENGTH

INTEGRATE
COMPAT
EQUATIONS

ASSUME
NEW W

ALL
WITHIN
ToL 2

RETURN

Figure' 3-3c.

SUBROUTINE FOR CALCULATION OF SHOCK POINTS
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BDYPTS

INITIALIZE

Jd = 1 b}
ASSUME dp/dt |

FIND BODY J=J+1

CONDITIONS | ASSUME dp/dt
FROM EQ. '

OF MOTION

FIND ASSUME NEW
CHARACTERISTIC dp/dt
LENGTH

INTEGRATE
COMPAT

ETURN
EQUATIONS i

Figure 3-3d. SUBROUTINE FOR CALCULATION OF BODY POINTS
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FIND SPATIAL

} DERIVATIVES AT J=J+1 I=1+1
NODE I, J
l NO
CALCULATE YES
TIME DERIVATIVES
AT I, d

l YES
USE TAYLOR'S
- EXTRAP
EXP TO FIND | g RETURN
VARS. AT T+aT - 10 EDGE

Figure 3-3e. SUBROUTINE FOR CALCULATION OF INTERNAL POINTS
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FRUSTUM
SHOCK

UPSTREAM
CONDITIONS
UNIFORM

YES

CALL RES
TO FIND
UPSTREAM
CONDITIONS

CALC.
p,p,U,V

BEHIND SHOCK

9O

CALLED
BY SHKPTS
?

NO

]

(:7 RETURN

)

FIND VELOCITY

COMPONENTS 1IN

HORIZ AND VERT
DIRECTIONS

Figure 3-3f.
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4
FIND x(y CURVEFIT M,
FOR EXéﬁ) s, P VERSUS X
CHAR LINE
FIND 3 _ -
CLOSEST x(y)_ FIND M(x)
TO POINT X, y §(x), P(x)
JWDTv
8(y), P(y) FOR
3 CLOSEST RETURN
[CHARACTERISTIC
LINES
FROM CURVE FIT
DATA

Figure 3-3g. SUBROUTINE FOR CALCULATION OF UPSTREAM
CONDITIONS ON SHOCK OVER A FRUSTUM
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NONUNIFORM
FLOW FIELD

DOWNSTREAM

RETURN

UPSTREAM

WITHIN

CURVEFIT
VARIABLES
AGAINST Y

STORE
COEFFICIENTS

Figure 3-3h. SUBROUTINE FOR QUASI-TWO- DIMENSIONAL CURVE FIT
OF UPSTREAM CONDITIONS OVER A FRUSTUM
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Section 1V

DISCUSSION OF RESULTS

The computer program described in Section III was used to compute a
number of test cases, each designed to test various routines within the total

program for extreme Mach number cases. The results from these test runs are

presented in the subsections that follow. Pertinent input data for each case

are presented in Table 4-1.

Table 4-1. INPUT FOR TEST CASES

Subsection 4.1 4.2 4.3 4.4
Body Shape Hemisphere Hemisphere Cylinder Frustum
Mach No. 4.0 1.62 4.0 1.9
Gamma 1.4 1.4 1.4 1.4
Free Stream Pressure

(1bs/£ft") 2116.2 2116.2 2116.2 2116.2
Free Stream Density

(slugs/ft3) .002378 .002378 .002378 .002378
No. of Horiz. Grid Pts 8 5 6
No. of Vert. Grid Pts 8 20 11 19
Dimensional Time Step 1. x lO_5 2. x lO"6 1. x 10_S 2. x 10_6
Horizontal Step Size .25 .143 .25 .2
Vertical Step Size 14 .1 .14 .12

41 MACH 4.0 HEMISPHERE

The program was used to compute the flow field over a one-foot radius

hemisphere at Mach 4.0.

The coordinate system did not extend above the body.

A graph showing the predicted lines of constant Mach number is presented in

Figure 4-1.

as presented in reference 18, is also presented in Figure 4-1. As

the results agree quite well with Belotserkovskiy's solution.

4-1

The sonic line and shock wave shape from a solution by Belotserkovskiy,

can be seen,
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Figure 4-1. LINES OF CONSTANT MACH NUMBER OVER A MACH 4.0 HEMISPHERE
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42 MACH 1.62 HEMISPHERE

The flow field over a one-foot radius hemisphere at Mach 1.62 was calculated
by the program. For this case, it was necessary to extend the flow field grid
above the body. A plot of the density distribution along the body surface,
along with experimental data from reference 17, is presented in Figure 4-2.
Figure 4-3 presents the shock and body configuration. The predicted body
density agrees with the experimental data in reference 17, but the predicted

shock standoff distance is about 10% smaller than the experimental data from

the same reference.

This extreme Mach number case exposed an apparent weakness in the technique.

As the Mach number decreases, the step size in time demanded by stability re-
quirements also decreases, resulting in an extremely short characteristic for

the boundary conditions. This short characteristic appears to provide informa-
tion to the shock and body node points that is somewhat inaccurate. This re-
sults in a smaller shock standoff distance and a zigzag shock pattern near the
axis of symmetry. If the zigzag shock is not too pronounced, a good approxi-
mation to the flow field may be made by fairing a curve through the points.

The problem can be reduced by a judicious choice of input parameters.

43 MACH 4.0 TWO-DIMENSIONAL BLUNT-CYLINDER-FLARE

The flow field over a two-dimensional blunt-nose-cylinder-flare configuration
was calculated to demonstrate the coupling between the Blunt Body Routine and
the Supersonic Flow Routine. The configuration had a one foot radius cylindrical
nose followed by a one foot long segment with a slope of 0° and a one foot long
segment with a slope of 10°. The resulting shock wave configuration, along with
some of the significant characteristic lines, is presented in Figure 4-4. To con-
serve computation time, the subsonic flow field in this run was not allowed to
reach a steady-state condition, and thus the true flow field is not accurately

represented.

44 MACH 1.9 FRUSTUM
The flow field over an axisymmetric frustum at Mach 1.9 was calculated

to demonstrate the capability of the program. The configuration consisted of

a frustum with a 45° slope, an upstream radius of one foot, a downstream
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radius of two feet, and a uniform upstream Mach number of 1.9. A plot of the
shock and body shapes and the resultant Mach lines is presented in Figure 4-5.
A plot of the body pressure distribution is presented in Figure 4-6. Un-

fortunately, comparative experimental data is not available.

The general shape of the shock and of the Mach lines is seen to be similar
to those observed over a hemisphere. As the upper corner of the frustum re-
presents an unresolvable singularity in the flow field, the corner was replaced
by a radial segment. An interesting result is the fact that the sonic line
intersects the body almost exactly at the place on the body where the curvature

begins, and the flow is supersonic over the entire curved region.

4,5 MACH 1.9 HEMISPHERE-CYLINDER-DETACHED FRUSTRUM—CYLINDER

Because of excessive computer turn-around time and contractual limitations,
the results for flow at Mach 1.9 over a hemisphere~cylinder-detached-frustum-
cylinder configuration were not available in time to include in this report.
The results, which are presently being calculated, will be presented in a
supplement to be published at a later date. The configuration consists of
a hemisphere with a radius of one foot, a cylinder one foot long, a one-foot-
long frustum with a slope of 450, and another cylinder one foot long. The
blunt nose solution can be compared to an inverse technique, but for the re-

mainder of the flow field, little, if any, experimental data exists.

4.6 DISCUSSION OF TIME STEP SIZE

While working with a preliminary version of the flow field deck it was
discovered that the use of the time step size decreed by the Courant-Friedrichs-
Lewy criterion, as discussed in Subsection 2.2.2 and based on the free stream
flow properties, led to instabilities and the degeneration of results. This
problem was eliminated by decreasing the step size arbitrarily to the point
where the instabilities disappeared, Later detailed analysis of flow fields
have shown that the minimum time step size is decreed by the lowermost grid
point on the shock (a point for which all the values necessary for the stability

criterion can be found before the execution of the program). However, the use
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of these step sizes also proved to be unstable. The cause of these unsuspected
unstabilities is thought to be in the characteristics used in the boundary
conditions, rather than the interior points. A rule of thumb has been developed

based on the step sizes used to generate stable flow fields:

A stable step size is provided by dividing by 10 the step size predicted
by the Courant-Freidrichs-Lewy criterion, based on the steady state flow

field properties at the lowermost grid point on the shock (as found from
normal shock relations).

4-10
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Section V

CONCLUSIONS AND RECOMMENDATIONS

The program for an entire Saturn type flow field analysis is shown by
the results to be a reasonable means to obtain Saturn type flow fields. The
major disadvantages, i.e., the awkwardness in the necessity of multiple runs
for analysis of detached frustum shocks and the amount of computer time
necessary for each one, are more than compensated for by the unique capability

of calculating supersonic flow fields with subsonic and mixed regionms.

The accuracy of the Blunt Body Routine depended upon the time and step
sizes and the free stream conditions. The program is seen to be an excellent
means to obtain good results for the higher Mach numbers, and can provide

reasonable results for the lower Mach numbers.

Although the Blunt Body Routine has been extended to allow the calculation
of a detached shock over a frustum with a non-uniform free stream flow, little
or no data exists to verify the results. However, as the technique is merely a
minor extension of the proven Blunt Body technique, the results should be valid.

Tf tha reculte ara waldid
4L Lhe results are allic

field of fluid dynamics.

Future work on the unsteady Blunt Body technique would need to establish
the coordinate system of the body in spherical, rather than cylindrical, co-
ordinates. A better method of matching the boundary point solutions to the
interior point solutions should be found, particularly for the low Mach number
cases. Finally, work should be done on the problem of singularities, such as

corners, in the flow field.

5-1
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Appendix A

INPUTS AND OUTPUTS

As the combined flow field program is divided into essentially three
main routines (the Cone Routine, the Blunt Body Routine, and the Supersonic
Flow Routine), it is considered expedient to break down the inputs and out-

puts of the combined program into these three areas.

A.1 INPUTS

In accordance with the above considerations, the inputs for the Cone
Routine, Blunt Body Routine, and Supersonic Flow Routine are presented as
separate blocks. Inputs for the special cases of a frustum and restarting
input are also presented. Table A-1 contains a list of all input symbols

and their definition.

A.1.1 Cone Input

Inputs to the Cone Routine consist of the free stream conditions, the
conical half angle, the number of ray-lines in the Taylor-Maccoll solution,
the number of points to be located on the initial right -running characteristic,

A abaAanl da AAamatAAawmAAd
1HIT DiUIULN 1O wulidiauc i cu

and a parameter 5
to be attached and certain cards as indicated in Figure A-1 are not included
in the input. If the parameter STEP is not zero, a test is made to determine
whether the cone shock is attached or detached. If the shock is detached,
control is passed to the Blunt Body Routine and the last four cards in

Figure A-1 are used as input to this routine. If the shock is attached, the
Cone Routine is used in the same manner as with STEP equal to zero, and the

last four cards are skipped.
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EE A 9 A g 9 & a9 d 9§ 2 9 2
ITYPHIRAY |IVL [STEP

FORMAT (315,E1d.0)
DELTA |G |MACH

FORMAT (3E[12.0)
S U T [EPS [ND NSTOP NOTE: LF [STEP [IS ZHRO,

FORMAT (6I]5) THE FOLLOW[ING CARDS HARE

NOT T0 BE {INCLUDED

RMAX DLT

FORMAT (2E[15.0)
PIN RIN

FORMAT (2E[15.0)
XF YLF YF

FORMAT ( 3E[15.0)

Figure A-1. CONE INPUT

A.1.2 Blunt Body Input

Input for the Blunt Body Routine consists of data necessary to describe
the grid mesh, data to describe the free stream conditions, and data to de-
scribe the body. After the program calculates a set number of time steps
(input), it is assumed that the solution has been found. A right-running
characteristic is generated by the body to the shock to couple the sclution

to the supersonic flow.

A= S g g A F F R d 9 2 2 }%

TTYPH STEP
FORMAT (15, 10XH10.0)

MACH KmM&A 1 1
FORMAT(ZjéZ.O)

™ M Pt [EPs [ND [NSTOP
FORMAT (61]5)

RMAX LT RSPHER
FORMAT ( 3E[L5.0)

PIN RIN
FORMAT (2EL5.0)

Figure A-2. BLUNT BODY INPUT
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A.1.3 Supersonic Flow Input

Input to the Supersonic Flow program consists of control options and a
complete description of the body. The control options specify the types of
output desired, while the body is described in terms of segments. The program
assumes there is a blunt nose on every body, but this nose can be of zero
size. The program can handle attached shock frusta and expansion corners, but
is limited to an ideal gas. If the program fails at a frustum, the program
terminates. The frustum may then be treated with the Blunt Body program to

continue the solution downstream.

'_f:? 3‘17' '?WI'IQ’IIIQ T g Q g g - % ﬂ gi ™~ :2 8
ALP

FORMAT (1746)
DEFGHJ |NH |RER | L] |

FORMAT (ST[1,13 11,12, 1XE1LR.8,2[T4)

FORMAT (L4l)
RNOSH {BNOSE 2 NOS |Y2NOSE [X*NOSE g

FORMAT(5ﬁ12.8,4X12)

B

ATT CI X1 |
e S 2 ¥

FORMAT (12,11, 1KI2,7XE12.]8)

BODY EQUATION CONSTANTS FOR SEGMENT I
2 ly2 IspopE IsLoPE 2 | lBI=1 cuBIC EQUPTION
X2 |SLOPE | | {BI=P CONKSTANT| SLOP[E, Y2{ COMPUTED ATE1
X2 [y2 | | {BI=B CONKSTANT| SLOPE, SLOPE CPMPUTED
X2 ly2 ) fvo 1 lB1=1] rADIUS GIVEN
AI=P

X2 |sLoPE 1 IsLopE P {B[=2 RADIUS|{ COMPUTED
A3 B3 kcB D3 |E3 3 |
G3 H3 it 3 K3 kY AI=3
M3 X2 J

FORMAT (6E[L2.8)|  fpr alll eight prcedipg cagds B

Figure A-3. SUPERSONIC FLOW INPUT
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Notice should be taken that for each body segment, except the blunt nose,
there must be a set of cards consisting of the fifth card and the corresponding
body equation constants cards shown in Figure A-3. For AI = 3, the body equation

constants are used in an equation of the form

Y = A3 (x-F3)* + B3(X-F3)° + C3(X-F3)2 + D3(X-F3) + E3

+ G3(H3(X-L3)° + I3(X-L3)2 + J3(x-L3) + k3)™"3

A.1.4 Restarting Input

The restarting mode enables the Supersonic Flow Routine to continue
a solution downstream from any previously calculated right-running character-
istic. This shortens the computation time necessary to calculate the flow
over a given nose configuration with several possible tail configurations.
The data necessary for the restart mode includes a pointwise description of
the right-running characteristic line (or a left-running characteristic or
any specified line), and a pointwise description of the total pressure ratio
versus height of the low shock. The solution will continue downstream from

the specified line.

A A S A F A 8 A A d 9 ] 38
TTYPH
FORMAT (I5)
MACH lAMMA |
FORMAT (2H12.8)
Licp
FORMAT (24KE12 J8)
ICHA
FORMAT (I 5)
NG
FORMAT (13)
YSHOQ [pTPfTS | } NG [NUMBER OF [DATA [CARDS
FORMAT (2H12 . 8)
MG
FORMAT (1)
X ly [DEL IMAC |PTPTM } MG [NUMBER OF |CARDS
FORﬂAT(SElZ.S)

Figure A-4. RESTARTING INPUT
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A.15 Frustum Input

The input necessary to calculate the flow over a frustum is essentially
the same as the input for a blunt body. Tape B7 from a previous run must be
used to specify the non-uniform flow field upstream of the frustum. Additional
input is necessary to define a region of interest around frustum, so as to
minimize the amount of curve fitting necessary to define the upstream flow
field. After a solution has been found, a right-running characteristic is
generated from the body through the frustum shock to the bow shock to couple

the solution to the Supersonic Flow Routine.

A S [& n S N (@) R [ ] s R S ¥y o
— e o~ o~ [sa) o) N 3 uy uy O O ~ ~ [e0)
W"T’?l‘ vt LI I mo e LN S B B 1 VUt orTTrT T T T™rTeY T LI Tt LA S . § T T L
ITYPH STEP
FORMAT(IS,IOX,EI0.0)
MACH IG |
FO T(2E12.0)
™ UM JJT EPS JIND INSTO
FORMAT (61I5)
RMAX . LT I,
FORMAT (2E[L5.8)
PIN RHOIN]
FORMAT (2E[L5.0)
XE YLF KF
FORMAT (3E[L5.8)
XMIN KMAX DELTA
FORMAT (3E[L5.8)

Figure A-5. FRUSTUM INPUT
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Table A-1. LIST OF INPUT SYMBOLS

The following list of symbols defines every symbol used for inputs.
The words Supersonic Flow Routine have been shortened to S.F.R. for brevity:

Al Indicator for body segment type in S.F.R.

AI=1 Cubic segment

AI=2 Radial segment

AI=3 General type body

ALPHA | 72 character alphameric title for S.F.R.

A3 Constant in general type body segment in S.F.R.

BI An indicator for body segment type in S.F.R. defines which segment
end conditions are input.

BNOSE | Used in S.F.R. Has value of 1.0 if blunt nose, zero if cone.

B3 Constant in general type body segment in S.F.R.
CI Specifies type corner of downstream corner of segment in S.F.R.
CI-1 Compression corner

CI=-1 Expansion corner

CD Drag coefficient based on area REF for S.F.R.
c3 Constant in general type body segment in S.F.R.
D Option for S.F.R.

D=0 Print orly body points

D=1 Print only shock points

D=2 Print all points

DEL Local flow deflection angle for S.F.R. (degrees),
DELTA| Conical or frustum half angle for Cone or Blunt Body (degrees).

DLT Time step (seconds) for Blunt Body Routine.
Must satisfy Courant-Friedrich-Lewy criterion.

D3 Constant in general type body segment in S.F.R.
E Indicator for S.F.R.
E=0 Print CP
E=1 Print P/PT,
E=2 Print P/PT
E=3 Print P/P,
A=b
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EPS

E3

F3

G3

H3

ICHAR

IND

IRAY

ITYPE

IVL

13

Indicator for Blunt Body Routine.
EPS=0 Two-dimensional flow
EPS=1 Rotationally symmetric flow
Constant in general type body segment in S.F.R.
Indicator for S.F.R. program.
F=0 Two dimensional flow
F=1 Rotationally symmetric flow
Constant in general type body segment in S.F.R.

Indicator for S.F.R. program. For use with frustum
routine, must be set equal to 3.

Specific heat ratio for S.F.R., Blunt Body, and Cone.
Constant in general type body segment in S.F.R.

Indicator for S.F.R. program,

H=0 No action
H=1 Punch C_, X on body
H=2 Punch E?X on body

Constant in general type body segment in S.F.R.

Indicator for restart data for S.F.R.
ICHAR=1 Initial value starting line
ICHAR=2 Left-running characteristic starting line
ICHAR=3 Right-running characteristic starting line

The number of grid points between the shock and the body
in the Blunt Body Routine.

An indicator to the Blunt Body Routine.
IND=0 Blunt body with hemispherical nose
IND=1 Cone with detached shock
IND=2  Frustum with detached shock

The number of ray lines to be used in the Taylor Maccoll
solution to the Cone.

Indicator for entire flow field.
ITYPE=1 Conical nose
ITYPE=2 Blunt nose or frustum
ITYPE=3 Restarting input

The number of points to be found on the right running characteristic

starting line on a conical nose, if shock attached.

Constant in general type body segment in S.F.R.

A-7
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JM

JT

J3

K3

L3

MACH

MG

M3

74
(]

NSTOP

PIN

PTPTM

PTPTS

Indicator for S.F.R.
Number of first right-running characteristic
summary . Normally equal to unity.

Number of vertical node points between centerline and uppermost
body point in Blunt Body Routine.

Total number of vertical node points in Blunt Body Routine.
Constant in general type body segment in S.F.R.

Indicator in S.F.R. Normally equal to unity.
Constant in general type body segment in S.F.R.

Indicator in S.F.R. Normally equal to unity.

Constant in general type body segment in S.F.R.

Free stream Mach number (Mach>1.0) for all Routines,

Number of points on starting line for restart for S.F.R.
Constant in general type body segment in S.F.R.

Indicator in S.F.R.

N=0 Normal exit

N=1 Build complete left-running characteristic
from end of body to shock

Number of points in shock wave table for restart for S.F.R.
Total number of segments of body. Since the S.F.R.

assumes all bodys have blunt nose segment, even if

of zero size, include blunt nose in total number of

segments NS.

The number of time steps to be taken by the Blunt
Body Routine.

Indicator for S.F.R. Normally equal to unity.
Free stream pressure (lbs/ftz).

The ratio of PT/PT along the starting line for S.F.R.
restart option. =

The ratio of PT/P on the shock for the shock wave table for
S.F.R. restart op%ion.

The maximum number of points on a characteristic line (Q<l100)
in S.F.R.
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velocity, and cotangent of the shock angle are also printed out. After the
completion of an input number of time steps, the program prints out the pressure
and density ratios, the Mach number, and the flow deflection angle at each node
point. The final shock standoff distance, velocity, and cotangent of the shock
angle are also printed out. The coupling characteristic is formed and the
position, Mach number, flow deflection angle, and total pressure ratio are
printed out for each point on the characteristics. Control is then passed to

the Supersonic Flow Routine.

A.2.3 Supersonic Flow Routine

The Supersonic Flow Routine prints out the body shape of each frustum,
the free stream conditions, and the flow properties along the initial
characteristic lines. A summary of the total pressure ratio behind the shock
versus shock radius is also printed out. As the solution continues downstream,
the flow properties at points along complete characteristics and the coordinates
of these points are printed out. At the completion of the run, a body pressure

summary is printed. Execution of the program is then complete.

A-11
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REF

RIN

RNOSE

RSPHER

SLOPE

STEP

XMIN -

X0

X2

X2NOSE

X*NOSE

Y

YF

The reference area for the S.F.R. program, If zero,
the reference area is the base area (feet™).

The free stream density for Blunt Body (slugs/ftz).

The height of the base of the frustum from the centerline for Blunt Body.
If body is blunt body and not frustum, must be zero (feet).

The height above the centerline for the uppermost grid
points in the Blunt Body Routine (feet).

If vehicle has blunt nose, the radius of the nose. If vehicle
has sharp nose, zero (feet). For S.F.R.

The radius of the blunt nose for the Blunt Body Routine (feet).

The conical half angle of a segment at the upstream or downstream
edge of the segment for S.F.R. (degrees).

The distance between points generated on the starting characteristic
by the Blunt Body Routine (feet).

An axial distance for S.F.R. (feet).

Used in automatically rounding a corner for the Blunt Body Routine.
This is the axial distance to the downstream end of the rounded
corner (feet).

The percentage step size for the S.F.R. over the body segment.

The axial distance to the downstream edge of the region of interest
around a detached frustum shock for Blunt Body (feet).

Used in defining a region of interest for the routine that provides

the non-uniform upstream flow field to the detached frustum shock.

This is the axial distance to the upstream edge of the region of

interest for Blunt Body (feet).

The axial distance to the center of a radial body segment in S.F.R. (ft.).

The axial distance to the downstream edge of a body segment in S.F.R.(ft.).

The axial distance to the downstream edge of the hemispherical
nose segment in S.F.R. (ft.).

The percentage step size for the S.F.R. over the nose segment.
A radial distance from the centerline in S.F.R. (ft.).

The radial distance at which the automatic rounding is to cease.
The rounding will end tangential to a cylinder at the point XF,YF (feet).

For Blunt Body Routine.

A-9
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YLF The radial distance at which the automatic cormer rounding is
to take place in the Blunt Body Routine (feet).

YO The height above the centerline of the center of a radial body
segment in S.F.R. (ft.).

YSHOCK |The height of the shock above the axis for the shock table in the
restart option in S.F.R. (ft.).

Y2 The height of the downstream edge of a body segment in S.F.R. (ft.).

Y2NOSE|The height at the downstream edge of the first (blunt) segment
for the S.F.R. (feet).

A.2 OUTPUT
In accordance with Section A.l, the outputs of the Cone Routine, Blunt
Body Routine, and the Supersonic Flow Routine are presented as separate blocks.

Table A-2 contains a list of the output symbols and their definitionms.

A.2.1 Cone Output

The Cone Routine initially prints out the cone semi-vertex angle, the
Mach number, and the ratio of specific heats. After the Taylor-Maccoll
solution has been found, the routine prints out the ray angles and the pressure
ratio, Mach number, flow deflection angle, and characteristic directions for
each ray. A coupling characteristic is then formed, and the location of points
on the characteristic and the values of the Mach number, flow deflection angle,
and total pressure ratio, at each point are printed out. Control is then passed

to the Supersonic Flow Routine.

A.2.2 Blunt Body Output

The Blunt Body Routine initially prints out pertinent information con-
cerning the free stream conditions, the space and time steps, and the body
shape. The initial flow field is calculated and the log of the pressure ratio,
the log of the density ratio, and the nondimensionalized velocity components

are printed out at each of the node points. The shock standoff distance, shock

A-10
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Table A-2. LIST OF QUTPUT SYMBOLS

The following table is the list of output symbols used in the printout

and their definitions.

CD

C+

DE
DELTA
DELTA
ETA

GAMMA

PHI
P/PO

P/PT

P/PTO |

PT/PTO

PT2/PT1

X

Drag coefficient, based on R-REF.

Local characteristic direction in Cone Routine.

Local characteristic direction in Cone Routine.

Local flow deflection angle in the Blunt Body Routine.

Local flow deflection angle in the Cone and Supersonic Flow Routines.
The local shock stand-off distance in the Blunt Body Routine.

The vertical coordinate in the Blunt Body Routine.

The specific heat ratio.

The horizontal node point indicator in the Blunt Body Routine.
(Unity on shock)

The vertical node point indicator in the Blunt Body Routine.
(Unity on the centerline).

Mach number.
Mach number.

In Blunt Body Routine, log of the local to free stream pressure ratio
during initial printout, and pressure ratio during final printout.

Local flow deflection angle.
Local static to free stream static pressure ratio.
Local static to local total pressure ratio.

Local static to free stream total pressure ratio.

Local total to free stream total pressure ratio.

The same as PT/PTO.

In Blunt Body Routine, log of the local to free stream density ratio
during initial printout, and density ratio during final printout.

A-12
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Ray
R-REF
SLOPE
VR

Vi

X1
X2

X*

Y2

A ray line in the Cone Routine.

Reference Area.

Local body slope.

Nondimensionalized vertical velocity in Blunt Body Routine.
Nondimensionalized horizontal velocity in Blunt Body Routine.
Horizontal coordinate from nose.

Nondimensional horizontal coordinate in Blunt Body Routine.
The X coordinate at the downstream edge of a segment.

The percentage step size over a segment in the Supersonic Flow
Routine.

The Y coordinate at the downstream edge of a segment.
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Appendix B

SAMPLE INPUTS AND OUTPUTS

As an aid to the user of the program this appendix contains sample input
and outputs data for the Blunt Body Routine corresponding to the flow over a

hemisphere at Mach 4.0.

B.1 SAMPLE INPUT DATA

2 .025
4.0 1.4
5 8 0 1 0 500
.98 .00001 1.0
2116.2 .002378
B-1
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B.2 SAMPLE OUTPUT DATA

Sample output data is shown on the following printouts.




2531

BE G N &N S O R N UE as e

2

S

25
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BLUNT NASED 680Y
AXISYMMETRIC CASE

WUMBER ¢ 2cTA  PUINTS 5

NUMHER o ADIAL PRINTS €

PREE STREAM MAUH 04 #0JU0000E 01

FREE STREAM DENSITY 0. 23780000E-02
* FREL STRCAM PRESSUKRE e 211620008 04

FREE STRcAM VELOCIIY  Ue«664T427E 04

DELTA ZETA  0.25000000° 00

VELTA cTA 0.14000000C 00

UELTA TIND) 0.94334907&-02

R o ) INVERSE B8F BO0Y SLIPE
0.0099)000E-38 0.,161392506 00 0.29166666€ 00 0.46279762€ 00 = 0.67592635E 00 0.98019601E 00 0.154814052 01l  0.49246848€ 0}

SELOND DERIVATIVE OF BADY SHAPE
3.10027090€ 01 0.10301371E Ol 0.11302807€ Ol 0.13379056E 0L 0.17584664F 01 0.27456470E Ol 0.62602727E 01 0.12689868E 03
T T 7 T X1 CH#BRDINATES #F POINTS < o )
0.10000000¢ Ol 0475000300 00 O. OE 00 0.2% 00 ~0. 00E-38

EVA CPORDINATES OF POINTS
0.00020020E-38 0.160002008 00 O0.27999999E 00 0.41999999E 00 0.55999999¢ 00 0.69999999€ 00 0.83999999E 00 0.98000000€ 00

INIETIAL VALUES

s 1 J=1 I=1 J= 2 I= 1 Je 3
P 0.29177707E Ol K 0.15198257E 0L P 0.29165108E 01l R 0,15195283E 01 0.29124201€E Ol R 0.15185606€ Ol
V2 3.10353140E Ol VR-0,00000000E-38 VI 0.10402358E 01 VR 0,13052730€ 00 vZ 0.10561730€ 01 V3 0.26809219€ 00

A

e 1 J= & ts 1 J» § is 1 4= 6
P 3.20043526E Ol R 0.15166436E Ol P 10.28893588E 01 R 0.15130500€ 01 0.28589144E 01 R 0.15056296€ 01
V2 2.10874130E 01 VR 0,42177632E 00 VI 0.11448089E 01 V* 0.60631522e 00 0.12587343E 01 V3 0.85133196¢ 00

< v
~

NI AN T - ’ I= 1 J= 8
P D.27768356E 01 R J.,14847813E 01 P 0.19814370€ 01 R 0.12116790¢ 01
VZ J.154914T7E 01 VR 0,12322099€ 01 YI 0.34116429E 01 VR 0.162066491E 01

=231 = 2ye2 s 2 J=3 i
THITIS026TEE 01 R 0.15430373E701 P T 0.29418169€ 01 R 0.15374549E 01 0.291577726 01 R 0.15203194€ 01
VI 3.77648547E 00 VR 0.00000000E-38 VI 0.7977L375E 00 VR 0.22132531E 00 0.86235398E 00 VR 0.441838006 00

<%
~

= 2 0= & T 1e 2 3o 5 1= 2 4= &
P 0.28697431E 01 0414903220 01 P 0.27982805E 0L R 0.1444614SE 01 0.26883197€ 01 R 0.13768152€ Ol
VI 9.97397103E 00 VR 0.658516490F 00 VZ 0.11413459€ Ol VR 0.87373528E 00 VI 0.13894778E 01 V2 0,10929255€ Ol

hJ

~

1= 24=7 1= 2 e 8
> D.2096D448F 01 R 0.12678106E 01 P 0.16377019€ 01 R 0.87598817€ 00
VI D.18165273E Ol VR 0,13457384E 01 VZ 0.35001158E O1 V4 0.14111429¢ 01

I 3 J= 1 i= 3 J= 2 1a 3 J= 3
?  2.,29827649€ 01 R 0.15662501E 01 P 0,29671270F 01 R 0.15553815€ 01 0.29191344E 01 R 0.15220792€ Ol
¥Z 2.51T765698E 00 VR 0.00000000€-38 VI 0.555101686 00 vk 0.31332331E 00 VI 0.566853498E 00 V3 0.61538380€ 00

A

I 3 4= & i=3 Je 5 Is 3 J= 6
7 3.2635133T€ O1L R O0.14560D04E O P 0,27072023€ 01 R 0,13761790E 0L @, S177249E 01 R 0.12480008€ 01
VI D.86042912E 00 VR 0.89525349E 00 VI 0.11374829& 01 VX 0.11397553¢ 01 5202213€ 01 VR 0.13345190E 01

=3 Js7 1s 3 J= 8
P 3.,22152541E 01 R 0.10508399E 01 P 0.12939657€ 01 R 0.56029730€ 00
VZ 0.20799069E Ol VR 0.14592668E 01 VZ 0.35885887E 01 Vk 0.11956367€ 01

1= & s 1 1= 6 Ju 2 LN N
P 3.33152620E 01 R 0.15894624€ 01 P 0.29924351€ 0L R 0.15733081E 01 P 0,29224916E OI R 0.13238370E 01
Yl 1.25882849E 00 VR 0.00000000E-38 VI 0,31266962E 00 VR 0.40472130E 00 VZ 0.4T471599€ 00 VR 0.78932960€ 00

Iz ¢ 3= & I & J= 5 I= & J= §
P D.25005243€ 01 R 0.14376788E Ol P 0.,26161241E 01 R 0.13077435€ 01 P 0.23471301E& 01 R 0.11191863E 01
VZ 3.76693720E 00 VR 0.11319921E Ol VI 0.1L344199E OL VR 0.16064754E 01 VI 0.16509648€ 01 VR 0.15761126€ 01

I= & 3= 7 I= 4 J='8
P 0.19344634E 01 R 0.83386926€ 00 P 0,95023160E 00 R 0.20450643E 00
. V2 ).23452865E 01 VR 0.15727953€ 01 VZ 0.36770616€ 01 VR 0.98013061E 00

I= 5 4= | I= 5 Jo 2 = 5 4= 3
P D.3)677591E Ol R 0.16126746E 01 P 0.30177433E 01 R 0.15912347€ 01 P 0.29258488€ O1 R 0.152%55957€ Ol
¥1-3.0 19 VR 0. ~38 VI 0.TO14TS45E-01 VR 0.49611931E 00 VI 0.28089698E 00 VR 0.9630754if 00
= 5 Js & (=5 J= 5 i= 5 4= ¢

P 2.27659149€ 01 R 0.16113573E 00 P 0.25250459E 01 R 0.12393080€ 01 P 0.21765354E 0L R 0.99037194€ 00
VI D.633646529E 00 VR 0.13687306E D1 VZ 0.11309569€ 01 VR 0.16731955E Ol VZ 0.17817083€ 0f V3 0.18177061€ 01

I P T Tl e .. Ie 8 Je'd - R . . - R
P D.16536727€ 01 R 0.61689858E 00 P 0.60649645E 00 R -0.13108444E 00
VZ 2.26106661E Ol VR 0.16863238E Ol VI 0.37655345E 01 VR 0.764u2445E 00

NELTA
0.25030095: 00 0.25738732E 00 0.28000095¢€ 00 0.31935767€ 00 0.37863149E 00 0.46439361€ 00 0.59306113¢ 00 0,85075282€ 00
SHOCK VELOCITY
0.0002003JE-38 0.,00000700E-38 0.00000000€-38 0.00000000E~38 0.00000000€-38 0.000000006-38 0.00000000E~38 0.,00000000E~38
SHECK COTANGENT
0.00000000E-38 0.35348125E-01 0.72916664E-01 0.11569940€ 00 0.16898159E 00 O0.24504900E 00 0.387035126 00 0.12311712€ 01




-
Y 0e577319328 ¢ 20631654665 02 S Ce353442528 02 . (el09167625 Gl DE 0e45573C35E ne. .

CeT7T4TGCHUE T2

—~ 1= 5 4= 7 Iz 5 J= ¢ e 2
Ce63543205E 01 3 0e21308364E 1 P Ca336439666E Ui R 0s14536913E o1
Se1421BC68E 01 OF CTe326599L9E C2 Y 0e17%45236F 01 DI 3411478349% 52 - S _—

. DELTA : :
TOJITITTII9E 00 0.172245528 00 0.TBIFSTO6E 00 0.19794074F 06 ~0:226595670F 60 0-2T GIS901E 00 0.36520861€ 00 0.58924195€ 00 g
) SHECK VELACITY . ) ) e o .
~0412168166E~06 ~0.21592291E-04 ~0.352T6143E~04 ~0.37887204E-04 -0.80533990E-0% ~0.44506472E-04 ~0,68708992E-04 -0.929115128~04 —~
SHBCK COTANGENT
0.30791853E-07 0.10510120 00 0.2033327SE 00 0.30950625€ 00 0.43258208E 00 0.52605031E 00 0.70036574€ 00 0.908831056 00 =~~~

. __3.002009006-38  0.00000000E-38

. ] [ = ~TR-792-8-306
STED 500
= 1 U= 1 = 1 4=2 Is 1 Ja 3 e e e
P~ 04184998976 C2 X 2443714223E ©1 P 0418295940E 02 R Ce45594301E Gl P Cel7758689E 02 R Se4528B545E (1
- . S 5. 0e43696626F CO OF CelU9UUL.VE (U M Co482$7661F UG F D,15601228F 02 M 2259417913F L0 DOF Le3113218&F 02
. 1= 1 g I= 1 Js 5 s 1 de 6 . .
04168681795 02 B C4wsb94891E 01 ©. (,15857291F o2 = Ceb37645385 D1 P Jel4453659E U2 R Ce42838145F o1
M 0753152995 Q0 DE Ca369377515 C2 %  (a952029E55 o5 OE Me387K2338F 02 N CalllS8160E 21  CE Ca38348Q83E.02 .
_ I= 1 J= 7 1= 1 J= 8 — I _
P Tel2357011E 02 & 1e4lLS33723Z (1 P L.1L056718E w2 = Je38202271E C1
e Cel3586997E J1 OF Ce35764S1E (2 ° 0al7254376F Ol LE Se2l&p7350F 22
o 1= 2 b= 1 I= 2 J= 2 1= 2 J= 3 ____ - N
F Qe198053935 C2 < (44302748 L P 0elF709210E C& R Ce4831R179E 21 P CelB212371E 22 & CesT31064$5E o1
0e311853C5F CC DE Cef . oslat a_ Y Je36283754E DU UT Ce26165161F C2 N 0Da492930975 45 . OF Cal391081elE 220
I o I=2u= 6 iz 2 J= & I= 2 = 6 S
P CTel7GT72351E 22 7 Cekb286649E 1 Cel6373222E T2 P Cekub5TS54ZE C1 P elL966630E 22 R Set2726888EF (1}
e __.De65227389% CJ DI Cab4T3SEEEE 32 Ce2D3763C8E CC  OF 00661933565 G2 M Ca10146389F L1 DT L.43146789E.02. —_
- v= 7 Iz 2 Jx &
Cel2CB4917S 02 R . Ce37719653E Ol P (Ce$7533555F o1 % Cs33259293E (1
— 00124936985 €1 UE Je28736534E L2 M Cel5290761% 21 D2E (e356%6444E D2 S
I= 3 J= 1 iz 3 J= 2 . . o e
P 0e2C4Z8611E 02 X CJe693C63215t o1 = Q022174892E 12 R. Ce4E791523F 01 CZ R Le6T751l88258 C1L
¥  Ce20389373E G0 OF JellUolav.E WO VM Le2326.797E Lo OF Ce35244773% 02 V5. DE CeoeT7lEB0TEE L2, I
I= 3 Ja & Ie 2 Jx 5 —_ I= 3 Je & . . . . e
P Cel7775913E T2 R 4e65213174E 9l D 2,1575238€€ 02 R Ce424346332 01 P CTel3648296E 2 R Ceu8L1€013F Ol
¥ De60711908E 0 DF 0695657428 (2 M (8068573585 30 DT 047344238F 22 v 2 W 1024350KF L1 D Ca4382.726E. L2. P
L1l= 3 9= 7 I= 2 4= ¢ - e
P Ce$9223538E (1 R Ce21503563F QL D  [47322004:F .1 K 0e257C1781E 01
Yo Cel2759C908 Q1 OF Ce36STSYS0E (2 M Ue15645771F vl U5 2e32.26.69F 12 . . —
1= 4 g2 1 I= & J=: ¢ 1= & y= 3. I ~ _
P Ce2100%758E GZ R Ce50i05¢30E Ui P Ceclbll26E Lo X De4Y5TOGLTE Ol P Sel9U5ZTI5E 52 R CeaTE56104F ont
R T 0910841065 O DE levoeiidueif 00 ' Ca20B39677F uu OF naSomkaiadn s Cs28GYREGIE 05 LT LaSiliiidshs e
I R £ R L 1= 4 j= 5 Iz & Jm & S
© Qel77397075 02 <X <e44BTT5.LE o1 © 26152094458 T2 X Ce4(:22756f 21 © ©e1l2223926E L2 R ve35005168E U1
Ce57239210E CC__DE Le571668165 02 “  Ce78217685L L5 0T Ze5378347263 02 ¥ 2ei7352821F 21 . oF Je434353182 e . -
i BLERSLE ] Ie & J= 2 L i o
P 04834343395 C1 R _e2675872BE i © De5554766LEF <ol
: 0F 21 JOE Ce35823539f 22 ¥ 5416526597 01 S
e . e i= <42 ¢ . B} o
- 54358 02 R Ce50081.91F ¢ 2 Le2U65399%E U2 R 0e49e85329F o M vebTuseilds
Y. GeTTIUOIONE U0 DE CelTiUNUUE v M Lal7753854% 00 DE Cebl¥Biz24E c2_ v i<l CeT373%004 I
- I= 5 J= & iz £ J= 5 _ o l=5d=8 . e
2 017377308 Te43l74677E 13 139946E3E C2 R 0e3T648126F J1 ©  )aiC4=7021E 92 R ve3C393813¢ o5
) o

vCiv) Wao4

el
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Appendix C

SOURCE LISTING OF COMPUTER PROGRAM

A source listing of each subprogram or subroutine used in the detached
shock calculations (Blunt Body and Frustum) is included in this appendix. The
location of each portion of the program is indicated below.

Subprogram or Subroutine Page

BLUNT
ENTER
FUNCTION B
SHKPTS
BDYPTS
NTRNP2
NTRNP
CTL
NSMTH
INPRT
PRINT
EXTRA1
RANKH
BP
DERIV
EXTRA
INITL
INDR1
KIKOFF
RES
COFFER
POFIT

[eNe!
[ L

[ 1
Pt b ot ek b et = e = OO DN

OCOWWOWOwW ONOS FPNO

tNeoNoNoNoNe]
[ D I B B [

[
NN DN
S ON

e ReNeN o Ne! QQOODOOOO



SORIGIN ALPHA
$IBFTC NSLO1 DECK

X
1
2
3

10

50

200

SUBROUTINE BLUNT
REAL MIN
INTEGER EPS

DIMENSION DELF(1)9sAMF(1)sPF{1)eX(1)sY(1)

TR-792-8-306

COMMON /FRUS/ DELT9X29X19Y29RSPHERIXMINsXMAX9Y1 o IFRyRCsSTEP

COMMON DLYsDLZ9DLT

COMMON /CORNER/ JTsBPPP
COMMON /BLNT/ STPPsNSTOP

IMs UMIRMAT (25925) sRNEW(25925) s PMAT(25+25) s PNEW(254251) s
VRMAT (25925) s VRNEW( 259 25) s VZMAT (25425) sy VINEW(25925) »
XI1(25)9ETA(25)9W(25) sWNEW(25) sDELTA(25)9DBDY(25)9COT(25)9Gy
D2BDY(25) sD2ADY(25) s EPSHTHETA(25) +DELNEW(25)
COMMON /FRESTM/ VINsRHOINSPINIVINIIMINSRL

EQUIVALENCE (DELFoPNEW) o (AMFoPNEW(1912)) s (PFoRNEW) s (X9oVZNEW) »

1(YsVRNEW)
SF(X)=SQRT(1le/(Lle+X#X))

REWIND 4

K=0

CALL INITL(JTsRFITSCDD)

CALL INPRTI(JT)

CALL PRINT(JT)

CALL SHKPTS(UT)

CALL NTRNP

IF(JT=JM oGTe O) CALL NTRNP2(UT)

IF(RL oGTe «¢0001) CALL CTL

CALL BDYPTS

K=K+

DO 5C JU=1lsJT

W(J)=WNEW(J)
COTiJ)=COS{THETA{J))I/SIN(THETAL{J))
DELTA(J)=DELNEW{J)

DO 50 I=191IM
RMAT(I1eJ)=RNEW(TeJ)

PMAT (I 9J)=PNEW(IsJ)
VRMAT(I14J)=VRNEW([9sJ)

VZMAT (1 9J)=VZINEW(]9sJ)

CONTINUE

IF(MOD(Ks10) «EQe 0) CALL SMOO
IF(MOD(Ks10) oNEe 0) GO TO 10
WRITE(6+900)K

CALL PRINT(JT)

IF(K «LTe NSTOP )GO TO 10
DUM=a(Q,

WRITE(3)DUMIDUM
WRITE(6+903)DUMsDUM

DO 100 1=1,IM

DO 100 JU=1,4JT

DUM=2ATAN(VRMAT (19J)/VZMATI(I »J))

VZMAT(19J)=SQRT((VRMAT (19 J) #%24+VZMAT(I o)) %#%2)/ (GHEXP(PMAT (19J)

1=RMAT(IsJ) 1))
PMAT(IsJ)=EXP(PMAT(IsJ))

c-2
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RMAT (I 9 J)=EXP(RMAT(I9J)) ’ TR-792-8-306

100 VRMAT(I,J)=DUM
WRITE(69900)K
900 FORMAT(1MH155XSHSTEP 13)
CALL PRINTI(JT)
CDE=0.
DA=ETA(2)
DO 300 JU=1,UM
CO=(PMAT(IMeJ)RSF(COT(J) ) +PMAT({ IMeJ=1)#SF(COT(J=1)))*DA/
o (SFICOT(JU))I+SF{COT(U=1)))
IF(EPS oeNEos O) CD=CD*3,1415926% (ETA(J)+ETA(J=1))
CDE=CDE+CD
300 CONTINUE
AR=1,
IF(EPS oNEs 0) AR=3614159264%RFIT
CD=CO+COE/ (RFITHAR# ¢ S#GRPIN®MIN®MIN)
I1PE=3
AM=MIN
AM= AM##2
DO 400 JU=1,JT
SN=(SIN(THETA(J) ) ) %2
400 RMAT (1o =({(G+1e ) HAMRSN) /( (G=14)
XHAMESN+2 o) ) # % (G/(C=1le) ) #((G4+1s)/
X(2e #GHAMBSN=(Gmle) ) ) #%(]1e/(G=14))
K=0
I=1
JJ=zIM
420 ETAA=ETA(JY)
X{(1)=R (04 )=R(ETAA)
Y(1)=ETAA
XIA=0e
450 CALL ENTER(XIASETAAIVRMATDELIDUM)
CALL ENTER(XIASETAASVZMAT sAMDUM)
CALL ENTER(XIASETAAIPMAT sP e DUM)
ANGLE=ARSIN{i1e/AMI=DEL
X{(I+1)=X(1)=STEP*COS(ANGLE)
Y(I+1)=Y(I)+STEP*#SIN(ANGLE)
DEL=DEL#1804/3.1415926
DELF(1)=DEL
AMF(1)=AM
PTOPT=P# (((le+(G=la)%eSHAMBAM) /(le+(G=10s)#e SHMIN®MIN
1 G=1le¢)))
PF(I)=PTOPT
I=zl+]
J=IFIX(ETAA/ETA(2)+145)
ETAA=Y (1)
IF(ETAA «GTe ETA(JT) eORe ETAA oL Te O¢ «ORe XIA oL Te 0s)

Y)#%(G/(

GO TO 600

DEL=DELTA(NI+(DELTA(JI+1)=DELTA(J) ) (ETAA=ETA(J) )/ (ETA(JU+1)=ETA(J))

XIA=(R(0s)=X(1)=B(ETAA))/DEL
IF(XIAGLTe(1e=STEP#45)) GO TO 450
IF(KeEQsl) GO TO 500
K=1
X1A=140
X0=1000,

460 X(1)=R(0es)=R(Y(1))=DEL

c-3
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IF(ABS(X{1)=X0)eLTeSTEP#e001) GO TO 450
Y(I)=(X(I=1)=X(1))*SIN(ANGLE)/COS(ANGLE)+Y(I=1)
ETAA=Y({I)
X0=xX(1)
DEL=DELTA(I)+(DELTA(U+1)=DELTA(J) I H(ETAA=ETA(J))/(ETA(J+1)=ETALJ))
GO TO 460
600 WRITE(69905) ETAAsX(I) o XIAJJ
905 FORMAT(12H FERROR EXIT 3FE1648416)
JJ=Ji=1
IF(JJ oLTe 1) CALL EXIT
GO TO 420
500 K=0
DO 5005 lJ=ls1l
5005 Y{({1J)=Y(1J)+RL
IF(RLeLTee00C1) GO TO 510
X(1)=X{I=1)
Y(1)=Y(1l=1)
501 CALL RESI{X(I)oY(I)sDELIAMF(I)sPF(I))
DELF(1)=2180e/341415926%DEL
=1+1
DEL=ARSIN(1e/AMF(1I=1))=DEL
X(1)=2X(1=1)=STEP*#COS(DEL)
Y{I)=Y(I=1)+STEPXSIN(DEL)
CALL SHSHP(X(I)sY{(TI)eYSK)
IF(Y=YSK)501+503+503
503 K=K+1
IF(KeEQe2) GO TO 510
504 Y(I)=(Y(]1)+YSK)#e5
X(I)eX(1=1)=(Y(I)=Y(I=1))*COS(DEL)/SIN(DEL)
CALL SHSHP(X(I)sY(I)sYSK)
IF(ABS{YSK=Y(]))=STEP#4001) 50145014504
510 CONTINUE
NIiv=l=1
WRITE{(3)INIVeJT»CDs IPE
WRITE(69T04INIVIJT oD IPE
WRITE(3) ETA(1)eRFIT
WRITE(69903) ETA(L)sRFIT
WRITE(3) MINsG
WRITE(6+903) MING
WRITE(3)(ETA(JUY sRMAT(19J) 0 Jd=19JT)
WRITE(69903)(ETA(JI)sRMAT (19 J)sd=19JT)
DO 700 J=1eNIV
I=NIV+l=y
WRITE(69903)X{TI)eY(I)sDELF(I)sAMF(I)ePF (1)
700 WRITE(3) X{IVeY(I)oDELF(I)sAMF(I)ePF (1)
REWIND 3
RETURN
903 FORMAT(4X6E16e8/(10X6EL1648))
904 FORMAT(4X12914X12914X2E1648)
END
SIBFTC NSLOZ2 DECK
SUBROUTINE ENTER(XsYsZsANSeDANS)
DIMENSION 2(25425)
COMMON DLYsDLZsDLT
X IMsJDIRMAT (25925) oRNEW(25025) 1PMAT(25925) o FNEW(25425)»



100

200

300

400

900

10
20

30

40

$IAFT

10 IF((Y2=Y) «GTe RC) GO TO 15

TR-792-8-306

1 VRMAT (25925) s VRNEW( 25+ 25) 9 VZMAT(25+25) s VZNEW(259251) »
2 XI(25)9ETA(25)9W(25) sWNEW(25) sDELTA(25)9DBDY (25)9COT(25)C

COMMON /CORNER/JM
JMAX=IM=1
IMAX=M=1
IF(X=XI(1)) 191,100
WRITE(69900) XsY
X=XI1(1)
IF(X=XI(IM)) 2009292
WRITE(6+900) XoY
X=X1(IM)
IF(Y=ETA(1)) 300933
WRITE(69900) XsY
Y=ETA(1)
IF(Y=ETA{IM)) 4449400
WRITE(69900) X»Y
Y=zETA(UM)
FORMAT(14X2E1648)
DO 10 I=2yIMAX
IF(X=XI(I)) 10420920
CONT INUE
I=IM
I=]=1
DO 30 JU=2yJMAX
IF(Y=ETA(J)) 40040930
CONTINUE
J=JM
JrJ=1

Fl=z(X=XT(1))/(XI(I+1)=XI(1))

F2=ETA(J+1)=ETA(J)

Gl=Z(19J)+(2(1410J)=Z(19J)) #F]

G2=Z(ToJ+1)+(Z2(1+19U+1)=2Z(19J+1))*F1
ANS=Gl+(G2=Gl ) *(Y=ETA(J) ) /F2

DANS=(G2=-G1)/F2

END
C NSLO3 DECK
FUNCTION B(YM)
COMMON DLYsDLZ4DLT

IMs JMIRMAT(25425) sRNEW(25925) 9 PMAT(25925) o PNEW(25925) »

X

1 VRMAT (25925) s VRNEW(25925) s VZMAT(25425) o VZNEW(25425)»

2 X1(25)9ETA(25) oW (25) s WNEW(25) ¢+ DELTA(25) 9DBDY(25) 9COT(25) Gy
3

D2BDY(25) 9D2ADY(25) sEPSyTHETA(25) s DELNEW(25)
COMMON /FRESTM/ VINSRHOINsPINIVIN1IMINIRL
COMMON /FRUS/ DELT#X29eX19Y29sRSPHERIXMIN9XMAX Y1)
COMMON /CORNER/ JT+BPPP

Y=YM

IF(YM oGTe ETA(JIM)) Y=ETA(IM)

IF(IFR«GT40) GO TO 10
B=SQRT(RSPHER##2=Y#%#2)

GO TO 20

BzSQRT (24 #RCH(Y2=Y )=(Y2=Y)%%2)

o =BPPP

IF(BelLTe(X2=X1=BPPP)) GO TO 20
15 CONTINUE
BaX2=X1+(Y1l=Y)#COS(DELT)/SINI(DELT)

s =BPPP

20 RETURN

END

Cc-5
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SIBFTC NSLO4  DECK
SURROUTINE SHKPTS!JUM)
INTEGER EPS
COMMON DLYsDLZsDL T
X IMs UDsRMAT (25+25) sRNEW(25+25) 9PMAT(25+25) sPNEW (259250
1 VRMAT (25+25) s VRNEW(25925) s VZMAT(25+25) s VZNEW(25925)
2 X1(25)¢ETA(25) sW(25) sWNEW(25) yDELTA(25) 9DBDY(25) 9COT(25) 4G
3 D2BDY(25) +D2ADY (25} sEPS,THETA (25) 9 DELNEW (25)
COMMON /FRESTM/ VINsRHOINsPINsVIN1sMINsRL
EPX=EPS
TL=40001
KL=0
1=1
DO 10 J=1sJM
DELNEW(J) =DELTA(J)+W(J)%DLT
10 WNEW(J)=W(J)
DELNEW(1) = (4¢% (DELNEW(2)+B(ETA(2)))=(DELNEW(3)
o +BIETA(3))))/3,=B(04)
JMA= gM=1
DO 20 J=2JMA
20 THETA(J)=145707963=ATAN((B(ETA(J=1))=B(ETA(J)) +DELNEW(J=1)
o =DELNEW(J)) Z(ETA(J)=ETA(J=1)))
THETA(1)=1,5707963
CALL EXTRA(THETA)
KSUM=0
22 DO 23 J=lyuM
SN=SIN(THETA(J))
CALL RANKH(1sJsWNEWsSN92)
23 CONTINUE
KL=KL+1
IF (MOD(KL910) +EQeO) TL=TL*10,
DO 100 J=1,JMA
SN=SIN(THETA(J))
CS=COS(THETA(J))
SNA=SQRT(1e/(14+COT(I)#%2))
CSA=SQRT(1e=SNA##2)
AQ1=SQRT (G*EXP (PNEW(1sJ)=RNEWI19J)))
DSDTQ=VZNEW(1sJ)=AQ1
DSDT=DSDTQ
25 SIGA==DSDT#DLT
IF(J=1) 30,40+30
30 ETAA=ETA(J)=SIGA*CS
ANUM=DELTA(J)=S1GA®SN+W (J)#DLT
IF(J oLEs JD) ANUM=ANUM+BIETA(J))=B(ETAA)
X1A=ANUM/ (DELTA(J=1)+(DELTA{J)=DELTA(J=1))
X #(ETAA=ETA(J=1))/(ETACJII=ETA(J=1)))
GO TO 50
40 XIA=1e=(SIGA=W(J)#DLT)/DELTA(J)
ETAA=0,
50 CALL ENTER (XIAsETAASPMAT 4P DP)
CALL ENTER(XIAJETAASRMAT,R¢DR)
CALL ENTER(XIASsETAASVZMATUsDU)
CALL ENTER(XTASETAASVRMATV 40V)
55 UA=U*SNA=V*SQRT (1e=SNA##2)
AA=SQRT(G#EXP{P=R) )
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DSDTN=45#(DSDTO+UA=AA)
IF(ABS(DSDT=DSDTN) +LTe ¢0001) GO TO 60
DSOT=DSDTN
GO TO 25
60 IF(J «EQe 1) GO TO 65
CALL DERIV(VRNEWsI9JsDVDN)
CALL DERIV(PNEWsI9JsDPDN)
CALL DERIVI(VZNEWs I9JsDUDN)
DUM=DVDN#*SN+DUDN#CS
DUDN=DUDN#*SN~DVDN#*CS
DVDN=DUM
HQl= =SN* (AQL1*VRNEW(1+9J)#DPDN/G+AQ1 *#DVDN=VRNEW(19J)
X *DUDN)I=EPX#{ VRNEW(19J) #SN=VZNEW(19J)#CS) /(ETA(J) +RL ) #AQ1
VA=U®SQRT (1s=SNA®#2)+V%SNA
DVT=2DU#CSA+DV#SNA
DUN=DU#SNA=DV*CSA
HA==SNA*( AARVA%DP /G+AA#DVT=VA*DUN ) =EPX#V/(ETAA+RL ) *AA
GO TO 70
65 HQl==AQ1#(EOX+1¢)#(VRNEW(192)#SIN(THETA(2))=VZNEW(1+2)*COS(
. THETA(2)))/DLY
HA==AAX¥DV#* (EPX4+1,)
IF(RL oLTe «0001) GO TO 70
HQl=HO1/(EPX+1,)
HA=HA/ (EPX+1e)
70 CONTINUE
HAV=(HA+HQL1)*#,5
AAV=(AQ1+AA)*45
UQl=AAV* (PNEW(19J)=P) /G+UA=HAV®DLT
IF(ABS(UQ1=VZNEW(19J)) oLTe ABS(VINEW(1sJ)#TL)) GO TO 90
DUDW=2+%#SN%(1e+ G/UOIVINLAWNEW(J) ) #SN)%%#2) ) /(G+1le) %2,
WNEW(J) =WNEW(J)=(UQL1=VZNEW(19J) ) /DUDW
GO TO 100
90 KSUM=KSUM+1
IF(KSUM +EQe JMA) GO TO 105

CONTY AL
AL I BN R LV}

Py
O
o

i =

KSUmM=0
CALL EXTRA(WNEW)
GO TO 22
105 DO 110 J=2 M
Uz+VZNEW(19J) #SIN(THETA(J) ) +VRNEW( 19 J)*COSITHETA(J))
VaeVZNEW( 1o J) #COSITHETA(J) ) +VRNEW( L1 ) ®SIN(THETA(U))
VZNEW(1lsJ)=U
110 VRNEW(1sJ)=V
VRNEW(191)=0.
JMA= JD=1 '
DO 120 J=2sJMA
D2ADY(J)=(DELTA(J+1)+DELTA(U=1) =24 #DELTA(J) +B(ETA(JS+1))+B(ETA(J=1)
X =2 #BLETA(J)))/(DLY*%2)
D2ADY(J)==D2ADY (J)
120 CONTINUE
IF(JDeEQeIM) GO TO 140

JMA=JD+1
D2ADY(UD)==(DELTA(JUD+1)+DELTA(JID=1)=2+#DELTA(JID)
X ~B(ETA(JD)I+B(ETA(UD=1)))/(DLY*%2)

DO 130 JU=UMAIUM
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130 D2ADY(J)==(DELTA(J+1)+DELTA(J=l)=2,#DELTA(J)) /7(DLY®%#2)
140 CONTINUE
D2ADY(1)==24# (DELTA(2)=DELTA(1)4B(ETA(2))=B(ETA(1)))/
X (OLY#®%2)
RETURN
END

*[RFTC NSLOS NECK
SURRQUTINE RDYPTS
[NTEGER FPS
DIMENMSION DOAT(25) sDRAT(25) 9DVAT(25) s STO(25) 9 VAT (25) yDVMATI(25)
FQUIVALENCE(DVAT(25) s DYMAT(25))
COVMON DLY SsDLZ oDLT

X IMy UM RVAT (25925) sRNEW(25925) 9PMAT(25925) s PNEW(25925)

1 VRMAT (25925 ) s VRMEW( 25928 )9 VZMAT(25925) 9VINEW(25925) s

2 XI(25)sETA(25) oW (25) sWNEW(25) 9DELTA(25)sDBDY (25)9COT(25) Gy
3 D2RNY(25) oD2ANDY (25 ) sEPSyTHETA(25) oDELNEW(25)

COMYMOM /FRESTM™/ VINIRHOINPINIWINIMINRL
covMeN JCNRNER/ JT
TOLER=1000,
KT=0
JVa=s Vel
TRLUT oNFe UMY UMA=UM
€S =0
STO{1)=0,
DDAT(1)=O.
DRAT(1)=0,
Ir=Iv=1
JM= JMe 2
DO 155 J=2 MM
IF{J «GTe JM) GO TO 2
SM=SORT(1e/(1e+DBOY(J) %*%2))
CS=SORT(1e=SN¥#%2)
2 CONTINUF :

B 155 I=1IRyIM
VATL=VRMAT (9 J)#SN+VZMAT (9 J)*CS
VZVMAT(T9J)=VZMATIT oJ) #SN=VRMAT(14J)#CS

185 VRMAT(1sJ)=VATI1
DC 6 J=2Z2yuMA
SN=SQORT(le/(1e+DROY(J)*%2))
CS=SORT(1e=SN*%2)
VZMAT (IMyJ)=04
IF(J oEQe UMY GO TO 3
CALL DERIV(OMATIMsJoNPAT(Y))
CALL DERIVI(RMAT»IMsJsDRATI(J))
CALL DERIVI(VRMATs IMyJsDVMAT (J))
GO TC &
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DAT(J)=( “MAT (I J=2)=4e¥ PMAT(IMyJml)+3e% PHMAT(IMyJ))/(2enLY)
AT(Y)=( RMAT (IMeJ=2)=4e* RMAT(IMyeJ=1)+3e% RMAT(IMeJ) )/ (24%DLY)
Oy AT = (YRMAT (IMeJ=2 ) =4 o ¥ VRMAT (IMeJ=1)+3 e #VRMAT(IN9J) } /(2 #DLY)

0

—
(@]

11

12

15

20

CONTIMUF
STOC(JI=0
DPAT (L) =DPAT(J)#SN
CRAT(J) =DRAT(J) *#SN
DVMATIJ)=DVYMAT (J) #SN
VAT (J)=VRMAT(IMyJ)
NYBT==VAT(J)*¥DOVAT(J)=EXP (PMAT(IMesJ)=RMAT(IMsJ) ) %¥DPAT(J)
VRMEW (IMe J)=(VAT(J)+DYNTHLLT)
VAT(1)=0,
[F (UM oNEe JT) GO TO 7
VZHNEW(IMyIM) =2 o #VZNEW( IMy UM=1)=VZNEW (IMy IM=2)
VRMEW(IMy M) =2 o #*VRNEW ( IM 9 JM=1)=VRNEW (IMyM=2)
D0 B J=1yJMA '
PMNER(IVeJ)=DOMAT(IMeJ)+STO(J ) #DLT
RNEW(IMeJ) =RMAT (IMeJ)+DLT*(STO(J) /G+DPAT(J) ¥VAT(J) /G=VAT (J)
*¥CRAT(JU)) ‘
T=T+1

TF(MOD(KTe1Nn) oEQe 0O) TOLER=TOLER*,1

IF(JM sNEe JT) GO TO 9

PNEW(IMe M )=2 ¢ #PNEW( My JM=T1 ) =DNEW(IM9 IM=2)
RMEW(IMe M) =2 a #RNEW( IMy JM=1)=RNEW(IMyIM=2)
CONTINUE

DO 40 JUu=1sJVA

AP=SORT (GHEXP (PNEW(IMy J)=RNEW(IMsJ)))
SN=SQRT(le/(1e+DBRY(J)*#%2))
CS=SORT(1e=SN¥*%2)

IF(J oeNFe 1) GO TO 10

DPDON=0

DRDN=C o

DVON=VRMAT (IMy2)/DLY

lela) e 1T
NS LIRS 4

IF{J ¢EQe JM) GO TO 11

CALL DERIVI(RNEWsIM9sJsDRDN)

CALL DERIVI(PNEWsIMsJsDPDN)

CALL DERIV(VRNEWs IMsJsDVDN)

GO TO 12

DRDN=( RNEW(IMyJ=2)=4 ¢ #¥RNEW(IMsJ=1)+3 ¢ ¥RNEW(IMyJ) )/ (2e%DLY)

CPDN=( PNEW(IMoJm2)=Le*PNEW (IMoJ=1)+3e%¥PNEW(IMyJ))/(2e%DLY)

DVDM=(VRNEW(IMeJ=2) =4 e ¥*VRNEW (Mo J=1)+3e ¥ (VRNEW(IMyJ)) )/ (2%*DLY)

CONTINUE

DVON=DVDM®*SN

DPDN=DPDN*SN

DRDM=DRON #SN

V=VRNEW(IMyJ)

DSOT=AP

SIGR=DSDT*DLT

ETAB=ETA(J)+SIGB*CS

DELB=DELTA(J)+(DELTA(J+1)=DELTA(U) I *(ETAB=ETA(U))/(ETA(J+1)
-ETA(U))

XIR= (R(ETA(J))+SIGB*SN=B (ETAB) ) /DELB

CALL ENTER(XIRSETARSOMATPBsDP)

CALL ENTER(XIRSETAHIRMATIRBHDR)

CALL ENTER(XIRSETABsYVZMATHUBBYDU)

CALL ENTER(XIRWETARIVRMATIVBBYDV)
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\.'R:V:UH %Sh—u‘lR*CS

NENTN= 5% (AP+URR+SQRT (GHEXP (PR=RRB) ) )
IF(ARS(DSNDT=NSDTM) oLTe ABS(DSDT/TOLER)) GO TC 2%
nanT=NSNRTN

GO TC 20

AR=CART{ GHREXP (PR=RB) )

IF(J «F0s 1) GO TO 26

HPze (VEDPON+DVONXG)=FLOAT(EPS)#V%GxSN/ (ETA(J) +RL)
HQ=-(DP*VP“+G*DV+VEP*DU*G/AR)*SR-FLOAT(EPS)*VB*G/(ETAB+RL)
GO TC 27

HR==CHDVX* (FLOATIERS)+1,)

HD=mG#DYDMN# (FLOAT(EPS) +1W)

IF{RL oLTe #0001} GO TO 27

HRzMB/(FLCAT(EPS)+1le)
HE=HP/{FLOAT(EPS)+1s)

CONTINUE

PO=PR+2 ¢ *¥G#URR/ (AP+AR )+ (HP+HB)*¥DLT*45
IF(ABS(PP=PNEW{IMsJ)) «LTe ABS(PNEW(IMsJ))/TOLER) GO TO 30
STO(J)=STO(J)+(PP=DPNEW(IMesJ))/(2e%DLT)
&G TO 40

KSUM=KSUM+]

IF((KSUM+Y ) e FRAGJMA)IGO TO 60

CONTINUE

kKeym=0

D 70 7

D70 Js2 4V

VATI=VRNEW(IMeJ)
SMN=SQRT(1e/(1e+DRDY(J)#%2))
C5=80RT(1e~SN#%2)

VZNEW(IMy J)=VATLI*CS
VRNEW( TV J)=VAT]1#SN

“~x-Tg|r'AA-
SR SN
3 S
rroaa ™y
Lo'Nw

TIeFTC NSLOA nECK

SUBRROUTINE NTRNP 2(JT)
INTEGER FDS
COMMON DLY ¢DLZ9DLT

VIMAT (25425) s VRNEW (259 25) s VZMAT(25425) s VZNEW(25425)

L N =2 X

D2BRNY(25) 9yD2ZADY(25) s EPS
COMMOM /FIRESTM/ DMY () 4RL
IVAX=][M=] ’

JUAX=JT=1

DO 100 J=JVMeJIMAX
Y=FTA(J)+PL
WT==(WNEW(J)=W(J))/DLT
WY =Ze (W (J+1)=W({J=1))/(2e%*DLY)
DEL==DELTA(J)
DEL2=DEL**?

DELT==Y{(J)

DFLY=COT(J)

DO 100 I=2,IMAX
2=XTI(1)

- ==7#COT(J)

ET==Z3#yY

c-10
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Ey==2%0P2ADY (J)

IF(J=JM) 20910428

DELY=CELY=-DRDY (J)

E=E4+(Z=14)#DRDY (J)

FY=fY+(7=14)%D2RDY(J)

CONTINUF

E7==DELY

R=RMAT(IsJ)

VZ=VZIMAT (1 sJ)

VR=VRMAT (I 9J)

P=PMAT(14J)

EL=EXP(RP)

ER=FXP(R)

EFPCER=EP/ER

CALL INDRYL(PMATsRY yRZyRYYIRZZ9RYZ 91 sJ)

CALL INDRI(PMATsPYsPZ9yPYYSPZ229PYZs1sJ)

CALL INDRI(VZMATOVZY sWZZyVZIYYWNZZZsVIYZ 91 sJ)
CALL INDRI(VOMATIVRYIVRZIVRYYSVRZZsVRYZ s sJ)
D= {+W(J)#Z+VR*¥E+VZ) /DFL
DZ=(W(J)+E#YPRZ74+VR*FZ4v2Z22) /DEL
DY=(=DH¥DELY+ERVRY=WY*Z+VR*EY+VZY) /DEL

DTzm (DERZ+VPXRY+HVPY+(E#YRZ+VZZ)/DEL)
RT=RT=VR/Y*FLDATIEPRS)
VET==(DHYR7+VR¥VRY+EP*FE*P7 / (DEL*¥ER)+EP/ER*PY)
V7 T==(D#V77+VRXVZY+EP/ER*¥PZ /DEL)

FT=GAR T (DR (P7=GH¥RZ)+VR*¥(PY=G*RY) )
DT==D*CELT/NEL+ (=2 #*WT+E*VRT+VR*ET+VZT) /DEL
RTZ==(D7%¥R7+DARZIZ+VRZ#RY+VR*¥RYZ+ (EZ#VRZ+E*¥VRZZ) /DEL+VRYZ
1 +VZZZ/DEL)

RTYzem (DY#RZ+DHRYZ+VRY#RY+VR*¥RYY+ (DEL#EY=E#DELY ) *VRZ/DEL2+E#VRYZ
1 /DFL+VRYY=DELY®*VZZ/DEL2+V7YZ/DEL)
RTY=RTY={VRY/Y=VR/(Y##2) ) #FLOAT{EPS)

RT7=RT2=VR? /Y#FLCAT(EPS)

VRTZ== (DZ#VRZ+D¥VRZZ+VRZ*#VRY+VR*¥VRYZ+EPQER* ( (E#PZ+EZ=LE*RZ)
1 #P7/DFL+EXPZ2Z/DEL+PY®(PZ=RZ)}+PYZ) )
VRTY==(Y*VYRZ+DHEVRYZHVRYRVIY+VR¥VRYY+EPOER* ( (E*#PY+EY=E*RY
1 —-E#DELY/DEL)*OZ /DFEL+E#RPYZ/DEL+PY* (PY=RY ) +PYY))
V2TZ2==(NZ#V22+DRVLZZ+VRIRVLIY+VR¥VIYZ+EPQOER*¥(PZ/DEL*(PZ=RZ)
1 +PZ2/NEL))

VZTY== (DY®VZZ4+DHVZYZ+VRY®VZIY+VRERVIYY+EPQER*(PZ*(PY=RY

1 ~CELY/DELY+PYZ)/DEL)

PTZ2=GHRT 7= (N7 #*(PZ=GH*RZ)+D*{PZ2=~G*RZZ)+VRZ* (PY=G*RY)

1 +VR# (PYZ2=G#RIYZL))
FTY=GX¥RTY=(DY#(PZ=G*RZ)+D*(PYZ=G*XRYZ)+VRY*(PY=G*RY)

1 +VR®(PYY=G*RYY) )
RYIT==(DT*#RZ+D¥RTZ+HVRT#RY+VR*¥RTY+(DEL*ET=DELT*E ) *VRZ/DEL2
1 +(VRTZ*E+VZTZ) /DEL+VRTY=DELT*#VZZ/DEL2)

RTT=RTT~VRT/Y*FLOAT(EPS)
VRTT==(DT*VRZ+D*VRTZ+VRTHVYRY+VR¥VRTY+EPOER* ((E*¥PT+ET=E*RT

1 —EXDELT/DEL)*P2/DEL+EXFPTZ/DEL+PY*(PT=RT)+PTY))
VZTT==(NTHYZ2Z2+D#VITZ4HVRTHVIY+VR¥VITY+EPOER*¥ (PZ/DEL¥*¥(PT=RT
1 ~DELT/DEL)+PTZ/DEL) )

pTT:G*RTT_(DT*(pZ—G*RZ)+D*(PTZ-G*RTZ)+VRT*(pY'G*RY)
1 +VR¥(PTY=G#RTY))
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HMO T e ) EDADTRDLTHETT DL TR T g6

EREW L e )Y ERITTITRDLTHNT I #DLTHDLT*e &

VORNEW( o)) 2sVRAVRTHEDLTHVRTTHOLT#DL T#*6 5
YIMNES(Ted ) sVZ+VZT*DLT+VZTT*DLTH#DL T*e5
CONTIMUT

20 110 I=2,IMAX

CALL EXTRAL(PNEWsI)

CALL EXTRAL(RNEWsI)

CALL EXTRAI(VZNEWsI)

CALL EXTRAI(VRNEWs )

CONTINUE

JMAX= M

DO 120 J=JMAX s JT

PHEWIIMaJ ) =2 o #PNEW(IMAX s J)=PNEW(IM=214sJ)
RNEW(INeJ) =2 e #RNEW(IMAX 9 J)=RNEW(IM=24J)
YZNEWw(IMe J)=VZNEW(IMAX 9 J) #¥2 ¢ =VZINEW( IM=2yJ)
YRMEV({ IMy ) =VRNE L (IMAX 9 J) #24=VRNEW( IM=24yJ)
RETURN

FiND

FTC NSLOT DECK

SURROUTIME NTRNP

INTEGER FPS

COVMON DLYsDLZWDLT
bd IMy UMIRMAT(25925) sRNEW(25925) sPMAT(25925) sPNEW(25925) s

1 VRMAT (25925) s VRNEW(25925) 9 VZMAT(25425) s VZINFWI(25925)
2 XI(25)9sSETA(25) 9w (25) s WNEW(2E) 9DELTA(25)9DBDY(25) 9sCOT(25) 4Gy
3 N2PDY(25) 9D2ADY (25) 9EPS

COMMON/CORNER/JUT

COMMON /FRUS/ DUN(BISIFR

CCMNOIN /FRESTM™/ DUNMN(5)RL

DLY = NP DISTAMNCE RETWEEN PTS IN R DIRECTION
ot - N N ISTANCE RETWEEN PTS IN 7 DIRECTICON

(SRR
NC1 TA T
NP RN SRR 1

J

i Z AXIS COUNTER

J = R AXIS COUNTER

RMAT = RHO MATRIX AT TIVME T

RNEW = RHO MATRIX AT TIME T + OLT

WMAT = DRESSURE MATRIX AT TIME T

PNEW = PRESSURF MATRIX AT TIMF T +DLT
VRMAT = RADIAL VELOCITY AT TIME T

VRNEy = RADIAL VELOCITY AT TIME T + DLT
VZ'AT = AXIAL VELOCITY AT TIME T

VZNEY = AXIAL VELOCITY AT TIME T + DLT
X1 = ND AXIAL DISTANCE

ETA = NP RADIAL DISTANCE

W = ND SHOCK VELOCITY

WNFEYW <« ND SHOCK VELOCITY AT TIME T + DLT
G = GAMMA

N2RDY = SECOND DERIVATIVE OF RODY SHAPE
D2ARY = SSCOND DERIVATIVE OF SHOCK SHAPE
IMAX=M=]

JHAX= JM=-]

Jn=2

IF(IFP «NEe Q) JUN=2

DO 100 J=1yJVAX

NTEST=(J=1)%#EPS

-
<
T
i
-

4
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13

13¢

140
145
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1“(RL.GT..0001)NTEST=1

Y=FTA(J)+%L

T==(WNEW(J)=W(J))/DLT
WY==(W(J+1)=wW(J=1))/(2+%¥DLY)

16(J «50Qe 1) WY=Do

CFL==DELTA(J)

NELR2=DEL*%2

NELT==W(J)

DELY=COT(J)=DRDY(J)

DO 100 I=2,IMAX

Z=X1(1)

E=DRDY(J)#(2=1,4)=2%COT (J)

ET==Z%WY

EY=(2Z=1e)%D2B8DY(J)=2%D2ADY({J)

FZ==DELY

R=RMAT(I4J)

VZ=VIMNAT(1sJ)

VR=VRMAT (I 4J)

P=PMAT(I4J)

EP=EXP(P)

ER=FXP(R)

FPOER=EP/ER

CALL INDR1(RMATsRYIRZsRYYIRZZIRYZ I sJ)
CALL INNDRI(PMATsPYsPZsPYYsPZ2yPYZs1sJ)
CALL INDRI(VZMATIVZYsVZZsVIYYSNZZZsVIYZ s1sJ)
IF(J=1) 11412911

CALL INDRI(VRMATIVRYsIVRZ sVRYYVRZZsVRYZ s1sJ)
GO0 TO 13

VRZ=0,

VR77=0,

VRY=VRMAT (1,42)/DLY

VRYY=0Ds
VRYZ=={YRMAT(I+192)=VRMAT(I =192}/ {DLY*2,%DL2)
CONTINUF

D=(+W(J)*Z+VR*¥E+VZ)/DEL
DZ={W({J)+F*YR74+VR*EZ4+Vv22Z ) /DEL
DY=(=D*NDELY+E*VRY=WY*Z+VR*¥EY+VZY)/DEL
RTz=(D*¥RZ+VR*¥RY+VRY+(E#VRZ+VZZ) /DEL)

IF(NTEST) 1359140125

RPT=RT=VR/Y

GO TO 145

RT=RT=VRY*#FLOAT (EPS)

CONTINUF

VRT==(D¥VRZ+VR®VRY+EP*E#PZ/ (DEL*ER)+EP/ER*PY)
VZT==(D*\Z2+VR*¥VZY+EP/ER*¥PZ /DEL)
PT=GH¥RT=(D#(P2=G*#RZ)+VR*(PY=0*RY))
DT==DXDELT/DEL+ (=Z#NT+E*¥VRT+VR*ET+VZT) /DEL
RTZ==(DZ2*RZ2+D#RZ2Z+VRZ*RY+VRH*¥RYZ+(EZ #VRZ+E*VRZZ) /DEL+VRY2Z
1 +Vv2727/DEL)
RTY==(DY#RZ+DH#RYZ+VRY#RY+VR*¥RYY+{DEL*¥EY=E*DELY ) *VRZ/DEL2+E*VRYZ
1 /DEL+VRYY=DFLY®¥VZZ /DEL2+vZYZ/DEL)
IF(MTEST) 16916915

RTY=RTY=(VYRY/Y=VR/{(YH#%2))

RTZ=RTZ=VR7/Y
O TO 20
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16 RPT72=RT7=VRYZ*F|LNAT(EPS)
0 VRTZ==(NZ*¥VRZ+D*¥YRZZ+VRPZ#VRY+VR#YRYZ+FEPOER* ( (E¥PZ+EZ=E#RZ)

1 ¥PZ/NEL+EXD7 Z/DEL+PY#(PZ=RZ)+PYZ))
VETY==(DY*VRZ+D*VRYZ+VRY*#VRY+VR#VRYY+EPOER* ( (E*PY+EY~E*RY
1 —E*DELY/NDEL)I*22/DEL+E*PYZ/DEL+PY* (PY=RY)+PYY))
VZTZ==(DI*VZI+DRVZIZT+VYRINVIY+VR#VIYZ+EPOER* (PZ/DEL*(PZ=RZ)
1 +P72/BEL))
VZTY==(DY*V7Z+D*VZYZ+VRYRVZY+VR#VZYY+EPOER* (P2 % ( PY=RY
1 =DFLY/DELI+PYZ)/DEL)
PTZ=GHRT 2= (DZ#(PZ=GX¥RZ)+D*(P22=G*RZZ)+VRZ*(PY=G*RY)
1 +VRR(DYZ~GHRYZ))
PTY=GARTY= (DY X (PZ=G*RZ ) +D*(PYZ=G*RYZ ) +VRY* (PY=G*RY)
1 +VR¥(PYY=G*RYY))
RTT==(DT#R7+D*RTZ+VRT*RY+VR*RTY+ (DEL*ET=DELT*E ) %¥VRZ/DEL?2
1 +{VRTZ*E+VZTZ) /DEL+VRTY=DELT*VZ2/DEL2)

IF(NTEST) 25930925

25 RTT=RTT=VRT/Y
GO TO 25

32 RTT=RTT=VRTY*FLOAT(FPS)

35 CONTINUF
VRTIT==(NT#VR7+D*¥VRTZ+VRT*VRY+VR¥VRTY+EPOER* ( (E*PT+ET=E*RT

1 =EXDELT/DEL)*PZ/DEL+E*¥PT2/DEL+PY# (PT=RT)+PTY))
VZTT==(DT#VZZ+D#¥VZTZ+VRT*#VIY+VR*¥VZTY+EPCER* (PZ /DEL*(PT=RT
1 =DELT/DEL)+PT7/DEL))

TT=G¥RTT=(DTH(CZ=G*RZ)+D* (PTZ=G*RTZ)+VRT* (PY=G*RY)
l +VR® (PTY=-G*RTY))

BNEY (I e J)=F+PTXDLT+OTTHLLT*#DLT*45
RNFW(ToJ)=R+RT#DLTHRTTHDLT#DLT*e5
VRUWEW(ToJ)sVR+VRTHDLT+VRTT*DLT*DLT*45
VZMNFW (T 9 J)=VZ+VZT¥DLT+VZTTHDLT*DLT*45
10 COMTINUE

DG 108 I=14IVAX
105 vRrEEW(Iel) =0
TF {UMNF o JTIRETURN
DO 110 I=2,IMAX
CALL EXTRAL(PNEVSI)
CALL EXTRAL(RNEW,I)
CALL EXTRALI(VZNEWSI)
CALL EXTRAL(VREVEWS])
CONTINUE
RETURN
END
“$IRFTC NSLOSR BHFECK
SURROUTINE CTL
COMMON DLYsDLZ4DOLT

s
P
O

X IMy UDIRMAT(25925) yRNEW(25925) 9PMAT(25925) s FREW(25925)

1 VR UAT(25925) s VRNEW(25925) s VZMAT (25925) o VZNIE'S (25925 )
2 XI(2%) 9ETAC26) 9% (25) s WNEX (2% ) sDELTA(Z25) s DROY(25) 9COTI25) 05
3 D2RDY(25)sD2ALY(25) s EPS»y THETA(25) yDFLNEW(25)

J=1

IMA= [M=]

TOLEX=1000.
DO 44 1=241YA
DVZZ=(VZMAT(I+191)=VZNVAT(I=191))/(2e%DLZ)

DPZ=(PMAT(I+191)=~PYAT(I=191))/(2e%DLZ)
CRZ=(PMAT(I+191)=RVAT(I=~191))/(24%DL2Z)
C-14
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40
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DVZT=={VINMAT( T 91 ) #DVZZ+DPZHEXD(PHAT (191 )=RMAT(Is1)))
SVRY=(4e#VRMAT(I92 ) =VvRMAT{I 93))/(2e%DL0LY)
DRT=={({DVRY+NVZ2Z+y2MAT( 191 )%#DRZ)
DET==VZYAT (191 ) #DPZHGHDIRTHERVINAT (191 )%#DR2Z
VZMEW(To1)avZMAT (T o 1) +NVZTHDLT
PNEW(I#1)=PVAT(Is1)+DPT*OLT
RNEW(I9l)=RVAT(Is1)+DRT*DLT
A=zSCRT(CGHEXP(PNEW (T o1 )=RNFW(I»1)))
DSNTASVIME {91 )=A
XTA=(XT{I)#DFLNEW(I)I+DSOTA®DLT)I/DELTACL)
FTAA=C

CALL ENTERIXIAZETAASPMATyRANDDA)

CALL ENTER(XIAsETAASRMATyRAZDRA)

CALL ENTFRIXTIASETALIVIMATSVIAIDVZA)

CALL ENTER(XIAWFTALYYPMAT9VRASDOVRA)
AA=SQRT(GH*EXP(PA=RA))

DESDTAN= 5% (V7 A=AA+VZNFW( ] 91 )=A)
IF(ARS(DSDTA=DSDTAN) « LT« ARSIDSETA/TOLERY)
GO TO 14

DEDTA=DSDTA"

G2 T7¢ 15

CENTaA=VZMEW(] 91 )+A
XIP=(DFLMEW (L) XTI (I)+DSDTR*DLTI/DELTA(L)
ETAR=0 .

CALL ENTER(XIRGETARIPMAT PR LOPP)

CALL EMTER(XIRSETAFIRMAT9RRyDRAY

CALL EMTER(XIRGETARGWIMAT W ZRyDVZR)

CALL ENTER(XIRIETARSVIMAT s VIRYDVRR)
AR=SQRT(G*EXR (PR=-R) )
DSDTRM=e 5 # (VZR+ARFVINEW (I 1) +A)
IF(ARS(NSNTR=NSDTHEN) o LTe ARS{DSDTR/TOLER))
GO TO 20

NDENTR=NENTRN

0 TG 17

AAVEA= 5% (A+AA)

AAVER= ¢5# (A+AR)

DVRNI W= (G ¢ #VRANEW(T 92)=VRNEW(193))/(2e%DLY)
DVRAVA= 5% (DVANSW+NVRA)

DVRAVR=45# (DVENEW+DVRR)

TR-792-8-306

UD1I=AAVEAXALVERX (VZA/AAVEA+VZB/AAVI R+ (PRB=PA) /G-DLT*(DVRAVB=CVEAVA )
X1/ (AAVER+AAVEA)

PO1l=PR=G# DV LYR®DLT~GX(UQL1=-VZR)/AAVER
[F(ARS(PQL1=PNEW(I91))elLTeABS(PNEW(I91)/TOLER)IGD TC 40
PMEW(I91)=e5% (PMNEW(T1)+PQ1)

VZNEW(Is1)=U01
DPT=(PMNEW(T91)=PMAT(141))/DLT
DRT=DPT/G+(VZMAT(191)%DPZ) /G=VIMAT(191)#DRZ
GO TO 13

VZNEW(Is1)=U0Q1

PNEW(Is1)=001

DPT=(PNEW(Is1)=PMAT(I»1))/DLT
DRT=DOT/G+(VZMAT(1s1)%*DPZ) /C=VIMAT(Is1)#DRZ
RNEW(I 91 )=RMAT(191)4+DRT*DLT

CONTIMUE

RFTURN

EMND
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$IRFTC MNSLOS DECK

1

SURROUTINE NSMTH(F »JT)
DIMENSION F(25925)
COMMON DUM(3) s " UM
IMAX=IV=1

AlM=IMAX

DO 10 JA=1,0T

DO 10 1A=2,IMAX
Al=1A-1

FUIASJAI=F (19 JA)+(FIIMsJAI=F(1sJA))*AT/AIM
CCMTINUE

RETURN

END

S$IRFTC MSL10O DFCK

0o
901
902
2013
Yo
Q05
aneg
cQo7
908
90¢%

SURRCUTINE INPRT(JM)
REAL ~IN
INTEGER EPS
DIVERNSION AC(2)sAD(2)9AE(2) 9AF(2)
COMMOM NLY sNL729DLT s
IVMIUDIRMAT(25925) o NEW(25925) 9PMAT (25925 ) s PNEW{Z2592% )y
VRVAT(Z25925) s VRNEW(25925) s VZMAT{25025) s VZNEW(25925) s
XI(25)sETA(Z25) oW (25) sNEW(25) oD LTA(23)9DBDY(25)9COTI25)9Gy
C2BDY(25)9D2ADY(25) 4EPS
COMMCON /FRESTM/ VINIRHOIMsPINSY/IMNIoMINY <L
DATA A2 sARSACIADIAEsAF sAGsAHIAL /6 2ETA $£HRADIAL s 6HMACH o
X AH sEHDENS ITo3HY  s6HPRESSUIZHRE »6HVELCCT s 2HTY 9
X SHZCTA 9SHETA s SHT(ND )/
WRITF (69900
WRITF(64901)
IF(EDS) 1N 420917
WPITE(64902)
GC TG 130
WRITF{54923)
WOITE(A£e504) AM TNV AR e M
12) ACs™MIteADIRHOIN sAF s R INsAF VI N
WRITE(69905) AGyDLZeAHsDLY s ALWDLT
WRITE(A9GQ1N)
WRITE(69906) (DBRDY(J)edz=zledM)
WRITE(K9910)
WRITF(64907) (ND2RDY(J) sJd=1y IV)
WRITE(A»olr)
WRITE(A9S08) (xI(1)el=1eIM)
WRITE(69910)
WRITE(6H4909) (FTALJ)ed=1euM)
WRITE(69900) '
WRITF(649911)
RETURN
FORMAT(1HI1)
FORMAT (52X 16HRLUMNT NOSED RODY)
FORMAT(BIX17THAXISYYMETRIC CASE//)
FORMAT (52X16HRECTILINEAR CASE//)
FORMAT (4X10HNUMRER OF AB91XTHFOINTS 12)
FORMAT (L4XEHDELTA A59E16e8)
FORMAT(4OX21HINVERSE OF BCDY SLOPE/(2XE8El1648))
FCRVAT (44X21HSECOND DERIVATIVE CF BCDY SHAPE/(3X8Z1643))
FORMAT (48X Z24HXT CODORDINATES CF POINTS/(2X8E1648))
FORMAT(4TX25HETA COORDINATES OF FOINTS/{(2X8E16e81))

W N = X

wWRITE(Es92
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G110 SOPMAT(/)
011 FORMATI(S53X14HINITIAL VALUFS//)
912 FORMAT(L4XIZHFREE STREANM A6sA3»EL6.8)
END
SIRFTC NSL11 DECK
SURROUTINE BPRINT(IM)
RFAL MIN
INTEGER EPS
COMMON NDLY sDLZ9DL Ty
IMaUN IR (25925 ) sRNEW(25925) 9P (25925 ) 9PNEW(Z592% ) s
VR(25925) g VRNEW(25925) sVZI(25925) 9y VZHEW(Z25425)
XI{25)sETA(Z5) sV (25) s wWNEW(25) oDELTA{25) 9DBDY(25)9COT(25) 9irs
D2BOY(25) sN2ADY(25) »EPS
COMMON /FRESTM/ VINSRHCINSPIM)WINIsMIMRL
ATA BPAIRAIWZAIVRAYIAYJA/2HP 92HR 9 2HVZ 9 2FrW Ry 2HI =9 2rd=/
1CiT=¢
BDC 100 I=1e1M
J==2
1 Uu=J+3
J1=J+1
J2=J+2
IF{J «GTe UM) GO TO 106
IF(J oNFe JY) GO 70 10
WRITE(S5s500) TAsIsJAsJ
WRITF(69901) PAsP(IsJ)sRAIRI(INI)
WRITE(6993C1) VZAIVZIIsJ) sVRASNR(IJ)
GO TC 90
10 IF(J+]1 «NEs JY) GO TO 20
WRITE(69900) [AsIsJAsJsIAsI s JAs Ul
WRITE(699C1) PAsPITIsJ) sRASRIIJI) 9PAsP( I sJl)sRAYR(T9J1)
ANRITE(E9901) VZAIVZIToJd) s VRASVR(IsJ)sVZAWWZ (T sJ1) s VHASVRITsJL)
GO TS 906
20 CONTIMNUE
SRITELS CGTN ) IAsIsJAs s IAs] s A leTAel sJAsJZ
WRPITE(69901) PAsP{Ted) oHAIR{IsJIIPAP{ Lo 1) sRA IR sI1)

W N\ = X

X yPASRP{IsJ2) 9 RAIR( T J2)
WRITE(69GC1) VZAIVZ(IsJ)oVRASNP (I sJ)sVZASNVZ (I aJ]l)sVRAIVRIIsJ1)
X YWZAIVZ T 9J2) sVRAYVRII »J2)

90 WRITE(6+502)
ICNT=1CNT+6
IF(ICNT oLTe 54) GO TC 1
WRITE(6+9C3)
ICNT=0
GO TO 1
100 CONTINUE _
IF(ICKT oLTe 48) GO TO 119
WRITE(65933)
11C WRITE(69904) (DELTA(J) yJ=1sJM)
WRITFE(699C5) (W(J)sJd=1yIM)
WRITE(6950h) (COT(J)ad=l M)
RETURN
900 FORMAT(10XA291291XA2s1292(29XA2 912y 1XA2s12))
901 FORMAT(RXZ(2XA29E15e892XA29E1548))
902 FORMAT(//)
903 FORMAT(1H1)
904 FORMAT(57XSHDELTA/(3X8E1648))
905 FORMAT(53X14HSHOCK VELOCITY/(3X8E16eR))
906 FORMAT(53X15HSHOCK COTANGENT/(3X8E1648) )

END
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TIEFTC NSLL? DECK
SU=ROUTIMNE SXTRAT(GY I
COUMON JCORMER/ J¥
PIMENSTION CG(254929)
GUIoJIMY =7%G (] glM=1) =GL{]9J¥=2)
RETURN
EvD
CIRPFTC NSLL13 NECK
SUBRCQUTINE RANKH(IsJsWeSNeK)
pr","‘L ,‘\,"{N
DITENSION W(28)
COMMON DLY oDLZeDLT
IMe Jite R 'AT(K‘.)’Z"‘) PRNEW(25925) 9PMAT(25925) o PREW(25925)
VRMAT(25925) s VRN (25025 ) sVZMAT(25925) sVZMNEWI(Z5»2R% )y
XI(2?)’9FA(Z5)9X(25)’V“FH(2‘J’UFL.A(ZA)yDB)Y(°D Yo COTU25) 90
D2BDY(25) 9D2ADY (28 ) 9EPSs THETA(25) 9 DELNEW(25)
COMMON /FRESTM/ VINIRHOINSRINGVINLIoMIN y L
COMMON /CORPMNFR/ JT PP
COMMON /FRUS/ DUMIS) 9 XMAX
WINV==W(J)
IF(RL «GTe «2NCOL1)Y GO TO BC
SN2=GN#G!
Us ((G=1a)# (VINL=WINV)*¥%2%SN2+2e%#5) / ({GH+1a ) H(VINLI=WINV)®S)
1 +WINV#SN
V=V INLI#SORT(]1e=S512)
P (2 (VINI="IMV)IH%2HSN2=G41e) /(G+lse)
RE({C+1le ) *#¥P4+G=10a) /(GH+]l e+ (G=10)*P)
CONTINUF
P=ALOG (D)
R=ALOG(R)
DEL=ATAN({SN/SORT(1le=SN*®%*2) ) =ATAN(U/V)
GO TO (20920} oK
20 VZMAT (T eJ)=SORT (UNX2+y %% ) %CCS (D!
YRYAT{ o) aV2MAT I o J)*SINIDEL) /0
PVMAT(Iedj=P
RMAT(IsJ)=R
RETURN
30 VINEW(IsJ)=U
VQN:V(I;J)-V }
PNEW(TI sJ) =D
RMEW(I4J)=R
RETURN
B0 X=XMAX=R(ETA(J) )=RPPD
GO TO (80970) 9K
A0 X=X=DELTA(J)
AC TO 80
70 X=X-=DELNEW(J)
20 ANG=ARSIN(SN)
CALL RBES(XsFTA(J)+RLIDFF9AMsSR)
RATI=(le+(C=1, ) # e SHMINEMINDY / (1ot { Cmle)dteB%AMEAL)
RM=AMEAMKGHWI MV HX2 /RAT 1 =2 # AMEWIMVACOS (DEF)#SQRT(G/RAT)
RETA=ANG=ATAN(AMY¥SIN(DEF) /(AM*COS(DEF) =W INVXSORT (1e/ (G*RATL) ) )}
=SORT(RATL/BMY ¥ ((Gmle )HRMUSIN(BETA)# %240 ¢ #G) /
o ((G+1a)#SIN(RFETA) Y+WINVERSIN(ANG)
V=AM%SQRT (GXRATLI)I*CUSIRETA)
P=(2¢#RVHSIMN(PETA)H#H 2 (Gmla) )/ (Gt la ) 4SR*(RATLIH*(C/ (Gm14)
R:((G+1e ) %#P+C=10) /(GH+la+(Gm=10e ) #P ) #SR*¥(RATLI#%(1e/(CG=14)))
GO TO 10
END

i) N X
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(@]

FL)
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rn

L

m

))
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NECK

SURROUTINE RP(FsYPsJeG)

DIMEMSTION FIL1)ehG(1)eYP(])
COoMrCN
COMMCN

Y=YP(J
X=R (V)
+RPDP

JERUS/ DELTsX29X19Y2sRSPHER»XMIN s XMAXs Y1y
JCORNER/ JTsRFOD
)

IF{IFR4TeN) GO TO 10
FlJl=Yy/X

GlJ)=
GO TC

(X#H24V#%2) / (X##3)

3N

IF(X oblTe {(NZ2=X1)) GO TO 20
FLJL)=COS(DELT ) /SINIDELT)
GlJY=0

GO TO

30

20 FlU)=(RC+Y=Y2) /X

SIRFTC

Gldr=(

RETUN

FAD
NSL1G

(RCHY=Y2 ) #5224+ X%%2 )/ (X*¥#3 )

MECK

QUAaRGUTIMNFE DERIVI(HsIsJsDH)
RIMEMSICN H{25425)
COMMON

Dz (T o J+1)=H(I +U=1))/(2%DLY)

2IRFTC

RETURM

END

NSL1E
SURKUU
DIMENS
COrNON
= ()
RETURN
END

SIRFTC NSL17

[SVERAS I 14

SURFOU
REAL M
INTEGE
COMMON

COMMON,
COMVCON
COMMON
COMMON
READ(S
IF(UT

READ(5
READ(E
IF(IFR
IF(IFR
IF(IFR
DFELT=D

DLY sDUM{Z2) s IMyIM

nECK
TINE EXTRA(F)
10N F(25)
JCORNER/ JY
= 24T (JU=1) = F(ul=2)

NECK
TINF INITL(JTsRFITeCD)
I’\
R ERS
DLY$OLZ 4 DLT s
[P e Y eRVAT (2R 25 ) 9RNEW(25925) oPMAT(259725) 9N

D2BDY(25) ¢D2ADY (25 ) 9 EFS
/FRESTM/ VINeRHCIilsPIN oV INT o VI RL
/BLNT/ STEPGNSTOP

TFRYRC

Wi{25928)

VRMAT(25925) sVINEW(25925) g VZMAT (25525) s VZHE (75428 ) s
XT(25)9ETA(Z5) s (25) slMES(25) sDELTA(25) 908DY(25)sC0T(25) 90

/FRUS/ DELToX29X1oY2oRSPHER 9XMINSXMAX oY1 g [F Zornils ST

JCNRNER/ JT oREPP
2900 IMeJIMeJTsEPSy IFRINSTOP

elLTe JM) JizJM

»9C1) “MAXsDLT9RSPHER

s001) PINGRHNIN

eGTe 0) RFAD(54901) X29Y1leY2

2 MNF g 2) GC TG 3
ELT*341415926/180,
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PLERSOHER
Vl:vl_QL

YZ=YZ2=-RL

RMAX=MAX ~FL

RPDP=0,

IF(IFP 4FQs0) G™ TO &
ALL=(Y2=Y1)/SIM(DELT)
RC=ALL/SIN(DELT*e5)#CCSIDELT*45)
ETA(IM) =FLOAT (UM=1)%RMAX/FLOAT(UT=1)
APTIP=SQRT (2 #RTCH(YZ=ETA(IM) )= (Y2=ETA(UM)*¥*/ )}
X1=X2=ALL#COS(DELT+1)

CONTINUF

DLT=DLT*SQRT(PIMN/RHIOIN)
DL7=1e/FLOAT(IM=1)
DLY=RMAX/(FLOAT(JT=1))

VINSMIN#SQRT (G#PIN/REOIN)
VINI=VIN®#SQRT(G)

FTA(1)=0,

RA=RSPHER

IF(IFRNE.Q) RR=Y2

SSCN=RP*¥ (4o /MIN) %245/ (Te#FLOAT(EPS+1))
Cl=R(0,)

RSC=8S0D+X?

NOO10 J=14JT

IF(J «ECe 1) GO TO 5
ETA(J)=(FLOAT(U=1)/FLOAT(JT=1)%*RMAX)
IF(U=JM) 54546

"CALL BP(DPNDYsETAJHYD2RDY)
DELTA(U)=(C1=-B(ETA{J)) )*e75+550D
COT(UY=DRNOY(J) /4

GO 70 7

COT(J)=COT (M)
DELTALUY=DELTAa(J=1)=COT{Jd %Ly

CONTINUF

[F(IFP 4FEN0s C) G2 TO9

YSO= (REOU=SART (RSO##2~ETA(J)¥%Z) )45
YY=AMIMNI(FTA(Y) o ETA(IMY) )
PELTA(J) =R (3,4 )+580N=XS0=R (YY)

COT{JI=CTA(J) /SART(2S0a#2=ETA(J)#%2)

CONTINUF

Wis) =04

COMTINUF

IF(RL «0Te o0001) CALL COFFER(XMINgXMAX 9L o D)
RL=2e

CD=C.

DO 20 I=1yIM

XI(I)=1le=FLOAT(I=2)/FLOAT (IM=1)

DO 30 JU=1eJT

SN=SORT(le/(1la+COT () #%2))

CALL RPANKH(19Je'WsSNyl)

CONTINUF

PMAT(191)=FXP (PMAT(1911))
PMAT(IMe1)=PMAT (1ol )/(({2ah(2eXGRMINHH2m=GEL )5 ((T=1s)
X EMINRHD4D ) )/ ((GFLe ) HA2HMIMuR2¥{ (Cmle )il Mn2
X +2a) ) )R {(G/{G=16)))

PMAT (IMe1)=ALOG(PMAT(IMy 1))
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PYAT (191l =ALOG(IPMAT(1s1 1))
No 38 J=1y Jt
EVAT(IMe J)=PMAT(IMe 1 ) #SORT(14/(1a+DRDY(J)xx) ]
RMAT(IMgJ)=RMAT (Ll )+ {PMAT( IMyJ)=PYAT(141)) /5
25 CONTINUE
VRMAT(IMy1)=0e
VZNEW(IMy1)=0e
VRMEW(IMy1)=0.
O 40 J=2 4 UM
VESQART (24 %GR (EXD(PMAT(IMel)=RMAT(IMe1) ) =EXP{OMAT (IMyJ)
X =RMAT(IMsJ)) )/ (G=1e))
SN2=1e /{1 e4DHDY(J)*%2)
VRMAT ([MyJ)Y=V*#SNRT (SN2)
40 VZHUAT(IMyJ)=V#SQRT(Lle=SN2)
IF(JT=JM) 60960450
50 JMP=JM+]
N3 55 J=JNVMPeJT
PUMAT (IMe J)=OMAT (IMeUM)
RWAT(IMeJ)=RMAT (IMe M)
VZMAT(IMe )=V ZVAT ( ITMe i)
55 VRMAT(IMyJi=sVRVAT( IMeJM)
60 CALL NSMTH(DMAT 4 JT)
CALL MSMTE(RMAT JT)
CALL NSMTH(VZMATJT)
CALL NSVYTH((VRMATJT)
RETURN
QNN FORMAT(1015)
Q01 FORMATI(4E1540)
END
+00106

SIRFTC NSL1A NECK

SUBROUTIMNE INDRI(GeGYsGZeGYYsCZZsGYZa19J)

DIMENSION G(25925

COMMCN DLY,LDL7

IF(J=1) 10420510

1C GY={G(IeJ+1)=G{IeJ=1)) /(2%DLY)

G2=={(G(1+19J)=C({I=19J))/(2e%DI.2)
GYY= (Gl oJ+1)+G (1 oJd=1)=2e%G{I9eJ) )/ (DLY®x2)
GZZ2=(0G(1+1 9 )4+G(I=19 ) =2e#C(IoJ) )}/ (DLZ%3%2)
GYZ==(G(I+19J+1)+G{I=19J=1)=G({I4I s =1)=C(l=19J+1))/(4e*¥DLIZ®DLY)
RETURM
CANTINUE
GY=0e
GZ==(G(1+19J)=G(I=19J))/(2s%DLZ)
GYY=2e¥({G(IeJ+1)=G(IsJ))/ (DLYH#%2)
G22=(C({I+1sJ)+G(I=19J)=2e#G(Iod))/(DLZ%*2)
GYZ=00»
RETURN
FAD

N
[}

SIRFTC NHMP NECK
SURROUTIME KIXKOFF
X==2e
Y=X¥%3479Q
RFTURM
END
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SIRFTC

10

20

Ln

AN
RV
a0

70

ac

MSLS1 nECK
SURBCUTIMNE RES (XsYsAA»3R»(CC)

DIVEMSION TOT(R)sF(2)sCOEF(694940) 9XX(40)

COMVON  /CHAR/ CNEF KK
DN 20 K=1,XK
SUM=COEF(1e1l9¥)
ANEIT=4

DO 10 N=24MFIT
SUY=SUM+COFRF(NgloK)# (Y ##(N=1))
AX (K )=SUv

NIFF=1l4%15%

N 30 K=l
DIR=ARPS (XX (K)=X)
IF(DIR «GTa NIFF) GO TC 40
DIFF=DIR

K=K

V=l=p

IF(K.LTOl)K:l
Ul=X=x%{«)
U2=Y=XX(K+1)
UB3=X=XX({¥+2)

U sXX (K )=XY{K+1)
US=XX (K )=X"{K+?)
JE=XX(K+]1 ) =XX (X +2)
FLl)=Uu2+#U3/(Uars)
Fl2)==(U3%U1) /(U&*IE)
Fi2)y=(Ul®u2)/ (Us=Us)
DO 70 1=1,3

TCT(I)1=04

CC 6N N=143

MAN=K $+M=]

NFEIT=5
SUM=CREF{ 1]+ 1yMM)

TOT(I)=TOT(I)+SUMHF(N)
CONTINUFR

AR=TCT (1)

RE=TOT (2)

CC=T0T(3)

RETUDRN

ENTRY SHSHE{X9ANS)
AMS=CUEF (1941 9KK+1)

DT BC I=296A

NA BN 1 = .MmETT
S Eard — _ 7' a0
SUMSSUMACOFF (L I+ 1 oNM) #(Y2x(L=1))

ANS=ANSH+CUEF{ T o lo KK+l ) # (X*x([=1))

RETURN
END
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$IRFTC MSL6Z NFCK

[
<

50

onn

SURRQUTINE COFFER(IXMINsXMAXSRFITICD)
DIMENSION X(20) 9Y(20)sE5(20)sDEL(2C) 9AM(20)
CIMENSION X1(20)sY1{(20)
DIYENSION HNL2(72)

COMMON /CHAR/ COEF(694940) 9KK
LL=2

Kk=0

REAR(4) RFIT

READ(G) HOL?2

READ (&) NMNANs MPTS o NNNM

DG 13 J=1sNPTS

N=NPTS+1~y

READ (&) XAIN) oY (NI DEL(N) oP(N)9AM(IN)
READ(4) CD

NPTRP=NPTS
IFI(X(NPTS)oGTaXMAX)IGO TO 50
IF(X(1)alLTeXMIN) GO TO 5
IF(NPTSaLTeS) GO TO 5

DO 20 K3=14NPTS

K1=NPTS+1=-K3

IF(X(K1) «GEe XMIN) GO TC 30
CONTINUE

5N TO &

DO 40 K2=14NPTS

IF(X({K2) oLFe AMAX) GO TOC 45
COMTINUF

GO TO 5N

NPTS=K1=K2+1

FINPTSeGELS) GO TO 48
K2=Kl=¢4

IF(K2elLTel) ¥2=1

Kzt

Ll =x{PTR)
YI(LL)=Y{NPTR)
LL=LL+1

CALL POFITIY(K2)s X(XK2)oNPTSsNFIT29COEF(1919KK)9ERR)
NTIT2=5

CALL POFITI(Y(¥2)y AM(K2)sNPTSoNFIT2sCOEF (129K} sERR)
CALL OCOFITIY(KZ2)9sDELIK2) sNPTSyNFIT29CCEF(L1939KK) 9ERR)
CALL DPOFIT(Y(KZ)s FB{K2)sNPTSINFIT2sCOEF(L1a4sKK) 9ERR)
GO TO 5

REWIND 4

LL=LL=1

WRITE(654900)(X(I)el=1slL)

FORMAT(4XAF1648)

NFIT1I=MTI0(LL=1s5"

CALL POFTIT(XLoYYoLULONFITLICOEF(LlslakK+1)9ERR)

RETURN

END
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SIRFTC

)

1¢C

20

9NN
ani

NSLA3 DECK
SURRCUTINE "OFIT(XeYsNPTSeNFITsCOEF sRRR)
DIMENSION x(1)sY(1)sCCEF (1) sC(30)
CALL LSQPF {XeYsOsNPTSsNFITe(CsIERR)
WRITE(6»900) I[EFRsC

C 397912912925
J=0

DIF=100,

[1=0

DO 10 I=1eVFIT

II=11+2+1

IF(C(II) «GTe DIF) GO TC 10
DIF=CI(1])

J=1

CONTINUF

DO 20 I=1+6

COEF(I)=C.

IRG=((J+1)%{u+2))/2=3

1I=J+1

DC 30 I=1»s11

IRGN=IRG+]

COEF(1)=C{IRGN)

WRITE(69901) COFF(1) s (COEF(N+1) oN=1oNFIT)
RETURN

FORMAT(10XI4/ (4X6E1548))
FORMAT(15X&E1668)

END
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